This model is randomly initialized, using the config from state-spaces/mamba-2.8b-hf but with smaller size.

Codes:

import os

import torch

import transformers
from huggingface_hub import create_repo, upload_folder

source_model_id = 'state-spaces/mamba-2.8b-hf'
tiny_random_name = 'mamba-tiny-random'
save_path = f'/tmp/yujiepan/{tiny_random_name}'
repo_id = f'yujiepan/{tiny_random_name}'

config = transformers.AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True)
config.hidden_size = 8
config.expand = 4
config.intermediate_size = 32
config.state_size = 8
config.num_hidden_layers = 2
config.n_layer = 2
config.torch_dtype = torch.bfloat16

model = transformers.AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = transformers.GenerationConfig.from_pretrained(
    source_model_id,
    trust_remote_code=True,
)

transformers.set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        print(name, p.shape)
        torch.nn.init.uniform_(p, -0.5, 0.5)

model.save_pretrained(save_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True)

result = transformers.pipelines.pipeline(
    'text-generation',
    model=model, tokenizer=tokenizer,
    device='cuda',
    max_new_tokens=16,
)('Hello')
print(result)

model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)

os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
Downloads last month
9
Safetensors
Model size
426k params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/mamba-tiny-random