File size: 9,967 Bytes
c04bed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7b3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c04bed3
 
 
 
 
 
6e14fcf
 
 
 
 
c04bed3
 
 
d6f0e9d
4433978
d6f0e9d
c04bed3
 
 
4d7b3a7
d6f0e9d
 
 
4d7b3a7
d6f0e9d
 
c04bed3
 
 
e4d84a3
 
4d7b3a7
 
 
c04bed3
 
 
 
 
 
 
 
 
4d7b3a7
c04bed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7b3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
---
library_name: transformers
language:
- multilingual
- bn
- cs
- de
- en
- et
- fi
- fr
- gu
- ha
- hi
- is
- ja
- kk
- km
- lt
- lv
- pl
- ps
- ru
- ta
- tr
- uk
- xh
- zh
- zu
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- quality-estimation
- regression
- generated_from_trainer
datasets:
- ymoslem/wmt-da-human-evaluation-long-context
model-index:
- name: Quality Estimation for Machine Translation
  results:
  - task:
      type: regression
    dataset:
      name: ymoslem/wmt-da-human-evaluation-long-context
      type: QE
    metrics:
    - name: Pearson Correlation
      type: Pearson
      value: 0.5013
    - name: Mean Absolute Error
      type: MAE
      value: 0.1024
    - name: Root Mean Squared Error
      type: RMSE
      value: 0.1464
    - name: R-Squared
      type: R2
      value: 0.251
metrics:
- pearsonr
- mae
- r_squared
---

# Quality Estimation for Machine Translation

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the ymoslem/wmt-da-human-evaluation-long-context dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0214
- Pearson: 0.5013
- MAE: 0.1024
- RMSE: 0.1464
- R2: 0.251

## Model description

This model is for reference-free, long-context quality estimation (QE) of machine translation (MT) systems.
It is trained on a dataset of translation pairs comprising up to 32 sentences (64 sentences for the source and target).
Hence, this model is suitable for document-level quality estimation.

## Training and evaluation data

The model is trained on the long-context dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context).
The used long-context / document-level dataset for Quality Estimation of Machine Translation is an augmented variant of the sentence-level WMT DA Human Evaluation dataset.
In addition to individual sentences, it contains augmentations of 2, 4, 8, 16, and 32 sentences, among each language pair `lp` and `domain`.
The `raw` column represents a weighted average of scores of augmented sentences using character lengths of `src` and `mt` as weights.

* Training data: 7.65 million long-context texts
* Test data: 59,235 long-context texts

## Training procedure

The model is trained on 1x H200 SXM (143 GB VRAM) for approx. 26 hours.

- tokenizer.model_max_length: 8192 (full context length)
- attn_implementation: flash_attention_2

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 60000 (approx. 1 epoch)

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.0233        | 0.0167 | 1000  | 0.0233          |
| 0.0232        | 0.0335 | 2000  | 0.0230          |
| 0.0225        | 0.0502 | 3000  | 0.0230          |
| 0.023         | 0.0669 | 4000  | 0.0224          |
| 0.0226        | 0.0837 | 5000  | 0.0223          |
| 0.0226        | 0.1004 | 6000  | 0.0225          |
| 0.0219        | 0.1171 | 7000  | 0.0222          |
| 0.022         | 0.1339 | 8000  | 0.0222          |
| 0.0213        | 0.1506 | 9000  | 0.0221          |
| 0.0213        | 0.1673 | 10000 | 0.0220          |
| 0.0218        | 0.1840 | 11000 | 0.0219          |
| 0.0215        | 0.2008 | 12000 | 0.0225          |
| 0.0218        | 0.2175 | 13000 | 0.0219          |
| 0.0218        | 0.2342 | 14000 | 0.0218          |
| 0.0217        | 0.2510 | 15000 | 0.0219          |
| 0.0219        | 0.2677 | 16000 | 0.0219          |
| 0.0212        | 0.2844 | 17000 | 0.0219          |
| 0.0219        | 0.3012 | 18000 | 0.0219          |
| 0.0218        | 0.3179 | 19000 | 0.0219          |
| 0.0213        | 0.3346 | 20000 | 0.0217          |
| 0.0218        | 0.3514 | 21000 | 0.0217          |
| 0.021         | 0.3681 | 22000 | 0.0217          |
| 0.0219        | 0.3848 | 23000 | 0.0220          |
| 0.0211        | 0.4016 | 24000 | 0.0216          |
| 0.0211        | 0.4183 | 25000 | 0.0216          |
| 0.0206        | 0.4350 | 26000 | 0.0216          |
| 0.021         | 0.4517 | 27000 | 0.0215          |
| 0.0214        | 0.4685 | 28000 | 0.0215          |
| 0.0214        | 0.4852 | 29000 | 0.0216          |
| 0.0204        | 0.5019 | 30000 | 0.0216          |
| 0.022         | 0.5187 | 31000 | 0.0216          |
| 0.0212        | 0.5354 | 32000 | 0.0217          |
| 0.0211        | 0.5521 | 33000 | 0.0216          |
| 0.0208        | 0.5689 | 34000 | 0.0215          |
| 0.0208        | 0.5856 | 35000 | 0.0215          |
| 0.0215        | 0.6023 | 36000 | 0.0215          |
| 0.0212        | 0.6191 | 37000 | 0.0215          |
| 0.0213        | 0.6358 | 38000 | 0.0215          |
| 0.0211        | 0.6525 | 39000 | 0.0215          |
| 0.0208        | 0.6693 | 40000 | 0.0215          |
| 0.0205        | 0.6860 | 41000 | 0.0215          |
| 0.0209        | 0.7027 | 42000 | 0.0215          |
| 0.021         | 0.7194 | 43000 | 0.0215          |
| 0.0207        | 0.7362 | 44000 | 0.0215          |
| 0.0197        | 0.7529 | 45000 | 0.0215          |
| 0.0211        | 0.7696 | 46000 | 0.0214          |
| 0.021         | 0.7864 | 47000 | 0.0215          |
| 0.0207        | 0.8031 | 48000 | 0.0214          |
| 0.0219        | 0.8198 | 49000 | 0.0215          |
| 0.0208        | 0.8366 | 50000 | 0.0215          |
| 0.0202        | 0.8533 | 51000 | 0.0215          |
| 0.02          | 0.8700 | 52000 | 0.0215          |
| 0.0205        | 0.8868 | 53000 | 0.0214          |
| 0.0214        | 0.9035 | 54000 | 0.0215          |
| 0.0205        | 0.9202 | 55000 | 0.0214          |
| 0.0209        | 0.9370 | 56000 | 0.0214          |
| 0.0206        | 0.9537 | 57000 | 0.0214          |
| 0.0204        | 0.9704 | 58000 | 0.0214          |
| 0.0203        | 0.9872 | 59000 | 0.0214          |
| 0.0209        | 1.0039 | 60000 | 0.0214          |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0

## Inference

1. Install the required libraries.

```bash
pip3 install --upgrade datasets accelerate transformers
pip3 install --upgrade flash_attn triton
```

2. Load the test dataset.

```python
from datasets import load_dataset

test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
                             split="test",
                             trust_remote_code=True
                            )
print(test_dataset)
```

3. Load the model and tokenizer:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Load the fine-tuned model and tokenizer
model_name = "ymoslem/ModernBERT-base-long-context-qe-v1"
model = AutoModelForSequenceClassification.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
```

4. Prepare the dataset. Each source segment `src` and target segment `tgt` are separated by the `sep_token`, which is `'</s>'` for ModernBERT.

```python
sep_token = tokenizer.sep_token
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
```

5. Generate predictions.

If you print `model.config.problem_type`, the output is `regression`.
Still, you can use the "text-classification" pipeline as follows (cf. [pipeline documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextClassificationPipeline)):

```python
from transformers import pipeline

classifier = pipeline("text-classification",
                      model=model_name,
                      tokenizer=tokenizer,
                      device=0,
                     )

predictions = classifier(input_test_texts,
                         batch_size=128,
                         truncation=True,
                         padding="max_length",
                         max_length=tokenizer.model_max_length,
                       )
predictions = [prediction["score"] for prediction in predictions]

```

Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.

```python
from torch.utils.data import DataLoader
import torch
from tqdm.auto import tqdm

# Tokenization function
def process_batch(batch, tokenizer, device):
    sep_token = tokenizer.sep_token
    input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
    tokens = tokenizer(input_texts,
                       truncation=True,
                       padding="max_length",
                       max_length=tokenizer.model_max_length,
                       return_tensors="pt",
                      ).to(device)
    return tokens
    


# Create a DataLoader for batching
test_dataloader = DataLoader(test_dataset, 
                             batch_size=128,   # Adjust batch size as needed
                             shuffle=False)


# List to store all predictions
predictions = []

with torch.no_grad():
    for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):

        tokens = process_batch(batch, tokenizer, device)
        
        # Forward pass: Generate model's logits
        outputs = model(**tokens)

        # Get logits (predictions)
        logits = outputs.logits

        # Extract the regression predicted values
        batch_predictions = logits.squeeze()

        # Extend the list with the predictions
        predictions.extend(batch_predictions.tolist())
```