Update README.md
Browse files
README.md
CHANGED
@@ -37,32 +37,54 @@ datasets:
|
|
37 |
- ymoslem/wmt-da-human-evaluation-long-context
|
38 |
model-index:
|
39 |
- name: Quality Estimation for Machine Translation
|
40 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
---
|
42 |
|
43 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
44 |
-
should probably proofread and complete it, then remove this comment. -->
|
45 |
-
|
46 |
# Quality Estimation for Machine Translation
|
47 |
|
48 |
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the ymoslem/wmt-da-human-evaluation-long-context dataset.
|
49 |
It achieves the following results on the evaluation set:
|
50 |
-
- Loss: 0.0214
|
|
|
51 |
|
52 |
## Model description
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
## Intended uses & limitations
|
57 |
-
|
58 |
-
More information needed
|
59 |
|
60 |
## Training and evaluation data
|
61 |
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
## Training procedure
|
65 |
|
|
|
|
|
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
@@ -72,7 +94,7 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- training_steps: 60000
|
76 |
|
77 |
### Training results
|
78 |
|
@@ -146,3 +168,126 @@ The following hyperparameters were used during training:
|
|
146 |
- Pytorch 2.4.1+cu124
|
147 |
- Datasets 3.2.0
|
148 |
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
- ymoslem/wmt-da-human-evaluation-long-context
|
38 |
model-index:
|
39 |
- name: Quality Estimation for Machine Translation
|
40 |
+
results:
|
41 |
+
- task:
|
42 |
+
type: regression
|
43 |
+
dataset:
|
44 |
+
name: ymoslem/wmt-da-human-evaluation-long-context
|
45 |
+
type: QE
|
46 |
+
metrics:
|
47 |
+
- name: Pearson Correlation
|
48 |
+
type: Pearson
|
49 |
+
value: 0.5013
|
50 |
+
- name: Mean Absolute Error
|
51 |
+
type: MAE
|
52 |
+
value: 0.1024
|
53 |
+
- name: Root Mean Squared Error
|
54 |
+
type: RMSE
|
55 |
+
value: 0.1464
|
56 |
+
- name: R-Squared
|
57 |
+
type: R2
|
58 |
+
value: 0.251
|
59 |
+
metrics:
|
60 |
+
- pearsonr
|
61 |
+
- mae
|
62 |
+
- r_squared
|
63 |
---
|
64 |
|
|
|
|
|
|
|
65 |
# Quality Estimation for Machine Translation
|
66 |
|
67 |
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the ymoslem/wmt-da-human-evaluation-long-context dataset.
|
68 |
It achieves the following results on the evaluation set:
|
69 |
+
- Last checkpoint: Loss: 0.0214
|
70 |
+
- Best checkpoint (this one): Loss: 0.0214
|
71 |
|
72 |
## Model description
|
73 |
|
74 |
+
This model is for reference-free quality estimation (QE) of machine translation (MT) systems.
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training and evaluation data
|
77 |
|
78 |
+
The model is trained on the long-context dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context).
|
79 |
+
|
80 |
+
* Training: 7.65 million long-context texts
|
81 |
+
* Test: 59,235 long-context texts
|
82 |
|
83 |
## Training procedure
|
84 |
|
85 |
+
- tokenizer.model_max_length: 8192 (full context length)
|
86 |
+
- attn_implementation: flash_attention_2
|
87 |
+
|
88 |
### Training hyperparameters
|
89 |
|
90 |
The following hyperparameters were used during training:
|
|
|
94 |
- seed: 42
|
95 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
96 |
- lr_scheduler_type: linear
|
97 |
+
- training_steps: 60000 (approx. 1 epoch)
|
98 |
|
99 |
### Training results
|
100 |
|
|
|
168 |
- Pytorch 2.4.1+cu124
|
169 |
- Datasets 3.2.0
|
170 |
- Tokenizers 0.21.0
|
171 |
+
|
172 |
+
## Inference
|
173 |
+
|
174 |
+
1. Install the required libraries.
|
175 |
+
|
176 |
+
```bash
|
177 |
+
pip3 install --upgrade datasets accelerate transformers
|
178 |
+
pip3 install --upgrade flash_attn triton
|
179 |
+
```
|
180 |
+
|
181 |
+
2. Load the test dataset.
|
182 |
+
|
183 |
+
```python
|
184 |
+
from datasets import load_dataset
|
185 |
+
|
186 |
+
test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
|
187 |
+
split="test",
|
188 |
+
trust_remote_code=True
|
189 |
+
)
|
190 |
+
print(test_dataset)
|
191 |
+
```
|
192 |
+
|
193 |
+
3. Load the model and tokenizer:
|
194 |
+
|
195 |
+
```python
|
196 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
197 |
+
import torch
|
198 |
+
|
199 |
+
# Load the fine-tuned model and tokenizer
|
200 |
+
model_name = "ymoslem/ModernBERT-base-long-context-qe-v1"
|
201 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
202 |
+
model_name,
|
203 |
+
device_map="auto",
|
204 |
+
torch_dtype=torch.bfloat16,
|
205 |
+
attn_implementation="flash_attention_2",
|
206 |
+
)
|
207 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
208 |
+
|
209 |
+
# Move model to GPU if available
|
210 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
211 |
+
model.to(device)
|
212 |
+
model.eval()
|
213 |
+
```
|
214 |
+
|
215 |
+
4. Prepare the dataset. Each source segment `src` and target segment `tgt` are separated by the `sep_token`, which is `'</s>'` for ModernBERT.
|
216 |
+
|
217 |
+
```python
|
218 |
+
sep_token = tokenizer.sep_token
|
219 |
+
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
|
220 |
+
```
|
221 |
+
|
222 |
+
5. Generate predictions.
|
223 |
+
|
224 |
+
If you print `model.config.problem_type`, the output is `regression`.
|
225 |
+
Still, you can use the "text-classification" pipeline as follows (cf. [pipeline documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextClassificationPipeline)):
|
226 |
+
|
227 |
+
```python
|
228 |
+
from transformers import pipeline
|
229 |
+
|
230 |
+
classifier = pipeline("text-classification",
|
231 |
+
model=model_name,
|
232 |
+
tokenizer=tokenizer,
|
233 |
+
device=0,
|
234 |
+
)
|
235 |
+
|
236 |
+
predictions = classifier(input_test_texts,
|
237 |
+
batch_size=128,
|
238 |
+
truncation=True,
|
239 |
+
padding="max_length",
|
240 |
+
max_length=tokenizer.model_max_length,
|
241 |
+
)
|
242 |
+
predictions = [prediction["score"] for prediction in predictions]
|
243 |
+
|
244 |
+
```
|
245 |
+
|
246 |
+
Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.
|
247 |
+
|
248 |
+
```python
|
249 |
+
from torch.utils.data import DataLoader
|
250 |
+
import torch
|
251 |
+
from tqdm.auto import tqdm
|
252 |
+
|
253 |
+
# Tokenization function
|
254 |
+
def process_batch(batch, tokenizer, device):
|
255 |
+
sep_token = tokenizer.sep_token
|
256 |
+
input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
|
257 |
+
tokens = tokenizer(input_texts,
|
258 |
+
truncation=True,
|
259 |
+
padding="max_length",
|
260 |
+
max_length=tokenizer.model_max_length,
|
261 |
+
return_tensors="pt",
|
262 |
+
).to(device)
|
263 |
+
return tokens
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
# Create a DataLoader for batching
|
268 |
+
test_dataloader = DataLoader(test_dataset,
|
269 |
+
batch_size=128, # Adjust batch size as needed
|
270 |
+
shuffle=False)
|
271 |
+
|
272 |
+
|
273 |
+
# List to store all predictions
|
274 |
+
predictions = []
|
275 |
+
|
276 |
+
with torch.no_grad():
|
277 |
+
for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):
|
278 |
+
|
279 |
+
tokens = process_batch(batch, tokenizer, device)
|
280 |
+
|
281 |
+
# Forward pass: Generate model's logits
|
282 |
+
outputs = model(**tokens)
|
283 |
+
|
284 |
+
# Get logits (predictions)
|
285 |
+
logits = outputs.logits
|
286 |
+
|
287 |
+
# Extract the regression predicted values
|
288 |
+
batch_predictions = logits.squeeze()
|
289 |
+
|
290 |
+
# Extend the list with the predictions
|
291 |
+
predictions.extend(batch_predictions.tolist())
|
292 |
+
```
|
293 |
+
|