tst-translation-output

This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8968
  • Bleu: 9.457
  • Gen Len: 17.4895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 30

Training results

Training Loss Epoch Step Bleu Gen Len Validation Loss
1.1751 0.47 3000 7.6766 17.4644 1.1289
1.0268 0.93 6000 9.2277 17.7668 0.9895
0.8075 1.4 9000 9.1197 17.6811 0.9457
0.8082 1.87 12000 8.4837 17.4826 0.9053
0.5841 2.33 15000 9.8887 17.5166 0.9303
0.6142 2.8 18000 9.547 17.426 0.9142
0.4119 3.26 21000 9.5055 17.3378 0.9879
0.2837 7.46 24000 11.0549 17.2982 1.0063
0.1792 8.4 27000 8.9031 17.2801 1.0856
0.1204 9.33 30000 1.1643 11.3498 17.2986
0.0826 10.26 33000 1.2319 10.796 17.3627
0.0617 11.19 36000 1.2785 10.6211 17.3748
0.0523 12.13 39000 1.3217 9.8848 17.3358

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yesj1234/mbart-mmt_15p_ko-ja

Finetuned
(116)
this model