Wav2Vec2_EmoRecog_Model_v5

This model is a fine-tuned version of facebook/wav2vec2-base on the IEMOCAP dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9448
  • Accuracy: 0.4436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7312 1.0 753 1.7018 0.3267
1.6018 2.0 1506 1.5855 0.3738
1.5244 3.0 2259 1.5603 0.3931
1.4636 4.0 3012 1.5217 0.4017
1.3947 5.0 3765 1.5199 0.4309
1.3283 6.0 4518 1.5389 0.4230
1.2596 7.0 5271 1.5628 0.4250
1.191 8.0 6024 1.5612 0.4555
1.1193 9.0 6777 1.5749 0.4542
1.0812 10.0 7530 1.6029 0.4462
1.0058 11.0 8283 1.6582 0.4422
0.9441 12.0 9036 1.7178 0.4290
0.8932 13.0 9789 1.7609 0.4502
0.8477 14.0 10542 1.8105 0.4469
0.7997 15.0 11295 1.7957 0.4382
0.7716 16.0 12048 1.8160 0.4502
0.7133 17.0 12801 1.9470 0.4329
0.7034 18.0 13554 1.9191 0.4462
0.6867 19.0 14307 1.9275 0.4495
0.6435 20.0 15060 1.9448 0.4436

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
35
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yenrong/Wav2Vec2_EmoRecog_Model_v5

Finetuned
(700)
this model