|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cointegrated/rubert-tiny2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: slot_token_classification_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# slot_token_classification_model |
|
|
|
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4739 |
|
- Precision: 0.6455 |
|
- Recall: 0.7092 |
|
- F1: 0.6758 |
|
- Accuracy: 0.8977 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.408 | 1.0 | 720 | 0.4998 | 0.6226 | 0.6688 | 0.6449 | 0.8909 | |
|
| 0.3758 | 2.0 | 1440 | 0.4815 | 0.6349 | 0.6868 | 0.6598 | 0.8953 | |
|
| 0.3383 | 3.0 | 2160 | 0.4746 | 0.6405 | 0.7002 | 0.6690 | 0.8958 | |
|
| 0.3278 | 4.0 | 2880 | 0.4733 | 0.6577 | 0.7032 | 0.6797 | 0.8977 | |
|
| 0.3053 | 5.0 | 3600 | 0.4739 | 0.6455 | 0.7092 | 0.6758 | 0.8977 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|