Hubert-common_voice-phonemes-debug

This model is a fine-tuned version of rinna/japanese-hubert-base on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4214
  • Wer: 0.9845
  • Cer: 0.1934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 12500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
No log 0.2660 100 18.5364 1.0645 1.8292
No log 0.5319 200 8.2791 1.0 0.9813
No log 0.7979 300 7.0224 1.0 0.9813
No log 1.0638 400 6.3106 1.0 0.9813
8.9892 1.3298 500 5.5223 1.0 0.9813
8.9892 1.5957 600 4.7121 1.0 0.9813
8.9892 1.8617 700 4.0028 1.0 0.9813
8.9892 2.1277 800 3.4755 1.0 0.9813
8.9892 2.3936 900 3.1988 1.0 0.9813
3.7187 2.6596 1000 3.0792 1.0 0.9813
3.7187 2.9255 1100 3.0459 1.0 0.9813
3.7187 3.1915 1200 3.0360 1.0 0.9813
3.7187 3.4574 1300 3.0084 1.0 0.9813
3.7187 3.7234 1400 2.4956 1.0 0.9343
2.783 3.9894 1500 1.4418 1.0 0.3331
2.783 4.2553 1600 1.0228 1.0 0.2753
2.783 4.5213 1700 0.8218 1.0 0.2532
2.783 4.7872 1800 0.7084 1.0 0.2433
2.783 5.0532 1900 0.6306 1.0 0.2337
0.8659 5.3191 2000 0.5934 1.0 0.2310
0.8659 5.5851 2100 0.5648 1.0 0.2284
0.8659 5.8511 2200 0.5330 1.0 0.2214
0.8659 6.1170 2300 0.5139 1.0 0.2209
0.8659 6.3830 2400 0.4907 1.0 0.2159
0.5271 6.6489 2500 0.4640 1.0 0.2160
0.5271 6.9149 2600 0.4609 1.0 0.2112
0.5271 7.1809 2700 0.4550 1.0001 0.2097
0.5271 7.4468 2800 0.4601 0.9992 0.2100
0.5271 7.7128 2900 0.4290 0.9953 0.2051
0.4244 7.9787 3000 0.4256 0.9971 0.2024
0.4244 8.2447 3100 0.4135 0.9999 0.2014
0.4244 8.5106 3200 0.4125 0.9956 0.1999
0.4244 8.7766 3300 0.3886 0.9942 0.1927
0.4244 9.0426 3400 0.3833 1.0006 0.1911
0.3373 9.3085 3500 0.3611 1.0364 0.1887
0.3373 9.5745 3600 0.3585 1.0080 0.1843
0.3373 9.8404 3700 0.3562 0.9981 0.1855
0.3373 10.1064 3800 0.3412 0.9883 0.1799
0.3373 10.3723 3900 0.3561 0.9835 0.1846
0.2779 10.6383 4000 0.3482 0.9772 0.1798
0.2779 10.9043 4100 0.3266 0.9795 0.1793
0.2779 11.1702 4200 0.3484 0.9792 0.1789
0.2779 11.4362 4300 0.3378 0.9992 0.1799
0.2779 11.7021 4400 0.3330 0.9764 0.1795
0.2409 11.9681 4500 0.3208 0.9781 0.1792
0.2409 12.2340 4600 0.3602 0.9757 0.1805
0.2409 12.5 4700 0.3363 0.9939 0.1788
0.2409 12.7660 4800 0.3253 0.9732 0.1795
0.2409 13.0319 4900 0.3285 0.9711 0.1762
0.2104 13.2979 5000 0.3233 0.9729 0.1769
0.2104 13.5638 5100 0.3363 0.9775 0.1827
0.2104 13.8298 5200 0.3371 0.9684 0.1759
0.2104 14.0957 5300 0.3464 0.9731 0.1778
0.2104 14.3617 5400 0.3450 0.9777 0.1783
0.1947 14.6277 5500 0.3442 0.9681 0.1773
0.1947 14.8936 5600 0.3346 0.9858 0.1780
0.1947 15.1596 5700 0.3524 0.9732 0.1771
0.1947 15.4255 5800 0.3414 0.9782 0.1774
0.1947 15.6915 5900 0.3438 1.0019 0.1766
0.1892 15.9574 6000 0.3391 0.9706 0.1802
0.1892 16.2234 6100 0.3505 0.9782 0.1803
0.1892 16.4894 6200 0.3467 0.9736 0.1767
0.1892 16.7553 6300 0.3681 0.9946 0.1792
0.1892 17.0213 6400 0.3557 1.0104 0.1769
0.1749 17.2872 6500 0.3446 0.9770 0.1787
0.1749 17.5532 6600 0.3496 0.9839 0.1803
0.1749 17.8191 6700 0.3585 1.0012 0.1806
0.1749 18.0851 6800 0.3562 0.9717 0.1799
0.1749 18.3511 6900 0.3722 1.0504 0.1835
0.1717 18.6170 7000 0.3554 0.9772 0.1809
0.1717 18.8830 7100 0.3678 0.9684 0.1788
0.1717 19.1489 7200 0.4938 1.0419 0.1854
0.1717 19.4149 7300 0.3926 0.9827 0.1805
0.1717 19.6809 7400 0.3581 1.0001 0.1819
0.1715 19.9468 7500 0.3569 0.9929 0.1840
0.1715 20.2128 7600 0.3911 0.9969 0.1814
0.1715 20.4787 7700 0.3973 1.0017 0.1808
0.1715 20.7447 7800 0.3943 0.9724 0.1839
0.1715 21.0106 7900 0.3984 0.9764 0.1823
0.1667 21.2766 8000 0.4306 1.0500 0.1840
0.1667 21.5426 8100 0.3794 0.9728 0.1882
0.1667 21.8085 8200 0.3966 0.9913 0.1834
0.1667 22.0745 8300 0.3981 0.9745 0.1838
0.1667 22.3404 8400 0.4328 0.9926 0.1826
0.1625 22.6064 8500 0.4087 0.9710 0.1835
0.1625 22.8723 8600 0.4149 1.0062 0.1861
0.1625 23.1383 8700 0.4107 0.9921 0.1875
0.1625 23.4043 8800 0.4140 0.9835 0.1869
0.1625 23.6702 8900 0.4087 0.9918 0.1890
0.1647 23.9362 9000 0.4083 0.9842 0.1870
0.1647 24.2021 9100 0.4006 0.9858 0.1847
0.1647 24.4681 9200 0.4137 1.0015 0.1850
0.1647 24.7340 9300 0.4107 0.9994 0.1906
0.1647 25.0 9400 0.4209 0.9843 0.1912
0.1667 25.2660 9500 0.4373 0.9957 0.1893
0.1667 25.5319 9600 0.4390 0.9822 0.1890
0.1667 25.7979 9700 0.4539 0.9857 0.1964
0.1667 26.0638 9800 0.4381 1.0037 0.1933
0.1667 26.3298 9900 0.4227 0.9875 0.1865
0.1644 26.5957 10000 0.4802 1.0266 0.1884
0.1644 26.8617 10100 0.4389 0.9950 0.1958
0.1644 27.1277 10200 0.4744 0.9828 0.1939
0.1644 27.3936 10300 0.4494 1.0006 0.1983
0.1644 27.6596 10400 0.4414 0.9963 0.1961
0.1742 27.9255 10500 0.4668 0.9764 0.1932
0.1742 28.1915 10600 0.4284 0.9720 0.1878
0.1742 28.4574 10700 0.4258 1.0279 0.1944
0.1742 28.7234 10800 0.4251 1.0024 0.1892
0.1742 28.9894 10900 0.4597 1.0201 0.1978
0.1669 29.2553 11000 0.4414 0.9879 0.1919
0.1669 29.5213 11100 0.4473 0.9772 0.1909
0.1669 29.7872 11200 0.4527 0.9944 0.1933

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
33
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for utakumi/Hubert-common_voice-phonemes-debug

Finetuned
(29)
this model

Evaluation results