Configuration Parsing
Warning:
In config.json: "architectures" must be an array
Calbert: a Catalan Language Model
Introduction
CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture.
It is now available on Hugging Face in its tiny-uncased
version and base-uncased
(the one you're looking at) as well, and was pretrained on the OSCAR dataset.
For further information or requests, please go to the GitHub repository
Pre-trained models
Model | Arch. | Training data |
---|---|---|
codegram / calbert-tiny-uncased |
Tiny (uncased) | OSCAR (4.3 GB of text) |
codegram / calbert-base-uncased |
Base (uncased) | OSCAR (4.3 GB of text) |
How to use Calbert with HuggingFace
Load Calbert and its tokenizer:
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-base-uncased")
model = AutoModel.from_pretrained("codegram/calbert-base-uncased")
model.eval() # disable dropout (or leave in train mode to finetune
Filling masks using pipeline
from transformers import pipeline
calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-base-uncased", tokenizer="codegram/calbert-base-uncased")
results = calbert_fill_mask("M'agrada [MASK] això")
# results
# [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.614592969417572, 'token': 61},
# {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.06058056280016899, 'token': 4867},
# {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.017195818945765495, 'token': 43},
# {'sequence': "[CLS] m'agrada llegir aixo[SEP]", 'score': 0.016321714967489243, 'token': 684},
# {'sequence': "[CLS] m'agrada escriure aixo[SEP]", 'score': 0.012185849249362946, 'token': 1306}]
Extract contextual embedding features from Calbert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("M'és una mica igual")
# ['▁m', "'", 'es', '▁una', '▁mica', '▁igual']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [2, 109, 7, 71, 36, 371, 1103, 3]
# NB: Can be done in one step : tokenize.encode("M'és una mica igual")
# Feed tokens to Calbert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = model(encoded_sentence)
embeddings.size()
# torch.Size([1, 8, 768])
embeddings.detach()
# tensor([[[-0.0261, 0.1166, -0.1075, ..., -0.0368, 0.0193, 0.0017],
# [ 0.1289, -0.2252, 0.9881, ..., -0.1353, 0.3534, 0.0734],
# [-0.0328, -1.2364, 0.9466, ..., 0.3455, 0.7010, -0.2085],
# ...,
# [ 0.0397, -1.0228, -0.2239, ..., 0.2932, 0.1248, 0.0813],
# [-0.0261, 0.1165, -0.1074, ..., -0.0368, 0.0193, 0.0017],
# [-0.1934, -0.2357, -0.2554, ..., 0.1831, 0.6085, 0.1421]]])
Authors
CALBERT was trained and evaluated by Txus Bach, as part of Codegram's applied research.
- Downloads last month
- 11