BERT-BASE-MONGOLIAN-UNCASED
Link to Official Mongolian-BERT repo
Model description
This repository contains pre-trained Mongolian BERT models trained by tugstugi, enod and sharavsambuu. Special thanks to nabar who provided 5x TPUs.
This repository is based on the following open source projects: google-research/bert, huggingface/pytorch-pretrained-BERT and yoheikikuta/bert-japanese.
How to use
from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-base-mongolian-uncased', use_fast=False)
model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-base-mongolian-uncased')
## declare task ##
pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer)
## example ##
input_ = 'Миний [MASK] хоол идэх нь тун чухал.'
output_ = pipe(input_)
for i in range(len(output_)):
print(output_[i])
## output ##
#{'sequence': 'миний хувьд хоол идэх нь тун чухал.', 'score': 0.7889143824577332, 'token': 126, 'token_str': 'хувьд'}
#{'sequence': 'миний бодлоор хоол идэх нь тун чухал.', 'score': 0.18616807460784912, 'token': 6106, 'token_str': 'бодлоор'}
#{'sequence': 'миний зүгээс хоол идэх нь тун чухал.', 'score': 0.004825591575354338, 'token': 761, 'token_str': 'зүгээс'}
#{'sequence': 'миний биед хоол идэх нь тун чухал.', 'score': 0.0015743684489279985, 'token': 3010, 'token_str': 'биед'}
#{'sequence': 'миний тухайд хоол идэх нь тун чухал.', 'score': 0.0014919431414455175, 'token': 1712, 'token_str': 'тухайд'}
Training data
Mongolian Wikipedia and the 700 million word Mongolian news data set [Pretraining Procedure]
BibTeX entry and citation info
@misc{mongolian-bert,
author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold},
title = {BERT Pretrained Models on Mongolian Datasets},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}}
}
- Downloads last month
- 41
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.