See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: Korabbit/llama-2-ko-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e4baa04ca4e4fdd2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e4baa04ca4e4fdd2_train_data.json
type:
field_instruction: import_statement
field_output: next_line
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: true
hub_model_id: tuantmdev/7a0bb651-9014-440a-993f-305619a36545
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1e-4
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 40
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 400
micro_batch_size: 2
mlflow_experiment_name: /tmp/e4baa04ca4e4fdd2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e3d59494-2ee7-4cc1-b4d8-1ec645f12911
wandb_project: Gradients-On-Demand
wandb_run: unknown
wandb_runid: e3d59494-2ee7-4cc1-b4d8-1ec645f12911
warmup_steps: 80
weight_decay: 0.0
xformers_attention: null
7a0bb651-9014-440a-993f-305619a36545
This model is a fine-tuned version of Korabbit/llama-2-ko-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4848
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 80
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 4.7432 |
2.9064 | 0.0362 | 50 | 1.7389 |
1.6391 | 0.0724 | 100 | 1.6316 |
1.5544 | 0.1086 | 150 | 1.5727 |
1.4779 | 0.1448 | 200 | 1.5435 |
1.4556 | 0.1810 | 250 | 1.5171 |
1.4762 | 0.2172 | 300 | 1.5001 |
1.5009 | 0.2534 | 350 | 1.4819 |
1.4524 | 0.2896 | 400 | 1.4848 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for tuantmdev/7a0bb651-9014-440a-993f-305619a36545
Base model
Korabbit/llama-2-ko-7b