SpanMarker for Named Entity Recognition

This is a SpanMarker model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses xlm-roberta-large as the underlying encoder. See train.py for the training script. Note that this model was trained with document-level context, i.e. it will primarily perform well when provided with enough context. It is recommended to call model.predict with a 🤗 Dataset with tokens, document_id and sentence_id columns. See the documentation of the model.predict method for more information.

Usage

To use this model for inference, first install the span_marker library:

pip install span_marker

You can then run inference with this model like so:

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-conllpp-doc-context")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")

Limitations

Warning: This model works best when punctuation is separated from the prior words, so

# ✅
model.predict("He plays J. Robert Oppenheimer , an American theoretical physicist .")
# ❌
model.predict("He plays J. Robert Oppenheimer, an American theoretical physicist.")

# You can also supply a list of words directly: ✅
model.predict(["He", "plays", "J.", "Robert", "Oppenheimer", ",", "an", "American", "theoretical", "physicist", "."])

The same may be beneficial for some languages, such as splitting "l'ocean Atlantique" into "l' ocean Atlantique".

See the SpanMarker repository for documentation and additional information on this library.

Downloads last month
5
Safetensors
Model size
560M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train tomaarsen/span-marker-xlm-roberta-large-conllpp-doc-context

Evaluation results