Model card for swin_s3_tiny_224.ms_in1k
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 28.3
- GMACs: 4.6
- Activations (M): 19.1
- Image size: 224 x 224
- Papers:
- AutoFormerV2: https://arxiv.org/abs/2111.1472
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows: https://arxiv.org/abs/2103.14030
- Original: https://github.com/microsoft/Cream/tree/main/AutoFormerV2
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('swin_s3_tiny_224.ms_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'swin_s3_tiny_224.ms_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g. for swin_base_patch4_window7_224 (NHWC output)
# torch.Size([1, 56, 56, 128])
# torch.Size([1, 28, 28, 256])
# torch.Size([1, 14, 14, 512])
# torch.Size([1, 7, 7, 1024])
# e.g. for swinv2_cr_small_ns_224 (NCHW output)
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 384, 14, 14])
# torch.Size([1, 768, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'swin_s3_tiny_224.ms_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, H, W, num_features) tensor for swin / swinv2
# or (batch_size, num_features, H, W) for swinv2_cr
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{S3,
title={Searching the Search Space of Vision Transformer},
author={Minghao, Chen and Kan, Wu and Bolin, Ni and Houwen, Peng and Bei, Liu and Jianlong, Fu and Hongyang, Chao and Haibin, Ling},
booktitle={Conference and Workshop on Neural Information Processing Systems (NeurIPS)},
year={2021}
}
@inproceedings{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
- Downloads last month
- 10,428
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.