timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers

Model card for gernet_m.idstcv_in1k

A GENet (GPU-Efficient-Networks) image classification model. Trained on ImageNet-1k by paper authors.

This model architecture is implemented using timm's flexible BYOBNet (Bring-Your-Own-Blocks Network).

BYOBNet allows configuration of:

  • block / stage layout
  • stem layout
  • output stride (dilation)
  • activation and norm layers
  • channel and spatial / self-attention layers

...and also includes timm features common to many other architectures, including:

  • stochastic depth
  • gradient checkpointing
  • layer-wise LR decay
  • per-stage feature extraction

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('gernet_m.idstcv_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'gernet_m.idstcv_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 112, 112])
    #  torch.Size([1, 128, 56, 56])
    #  torch.Size([1, 192, 28, 28])
    #  torch.Size([1, 640, 14, 14])
    #  torch.Size([1, 2560, 7, 7])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'gernet_m.idstcv_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2560, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@misc{lin2020neural,
  title={Neural Architecture Design for GPU-Efficient Networks},
  author={Ming Lin and Hesen Chen and Xiuyu Sun and Qi Qian and Hao Li and Rong Jin},
  year={2020},
  eprint={2006.14090},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Downloads last month
222
Safetensors
Model size
21.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/gernet_m.idstcv_in1k

Collection including timm/gernet_m.idstcv_in1k