metadata
language:
- en
- zh
- id
- th
- vi
- ms
- lo
datasets:
- cerebras/SlimPajama-627B
- Skywork/SkyPile-150B
- allenai/MADLAD-400
- cc100
tags:
- multilingual
- sea
- sailor
- TensorBlock
- GGUF
license: apache-2.0
base_model: sail/Sailor-7B
model-index:
- name: Sailor-7B
results:
- task:
type: text-generation
dataset:
name: XQuAD-Thai
type: XQuAD-Thai
metrics:
- type: EM (3-Shot)
value: 57.88
name: EM (3-Shot)
- type: F1 (3-Shot)
value: 71.06
name: F1 (3-Shot)
- task:
type: text-generation
dataset:
name: TyDiQA-Indonesian
type: TyDiQA-Indonesian
metrics:
- type: EM (3-Shot)
value: 60.53
name: EM (3-Shot)
- type: F1 (3-Shot)
value: 75.42
name: F1 (3-Shot)
- task:
type: text-generation
dataset:
name: XQuAD-Vietnamese
type: XQuAD-Vietnamese
metrics:
- type: EM (3-Shot)
value: 53.81
name: EM (3-Shot)
- type: F1 (3-Shot)
value: 74.62
name: F1 (3-Shot)
- task:
type: text-generation
dataset:
name: XCOPA-Thai
type: XCOPA-Thai
metrics:
- type: EM (3-Shot)
value: 59
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: XCOPA-Indonesian
type: XCOPA-Indonesian
metrics:
- type: EM (3-Shot)
value: 72.2
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: XCOPA-Vietnamese
type: XCOPA-Vietnamese
metrics:
- type: EM (3-Shot)
value: 72.2
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: M3Exam-Thai
type: M3Exam-Thai
metrics:
- type: EM (3-Shot)
value: 30
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: M3Exam-Indonesian
type: M3Exam-Indonesian
metrics:
- type: EM (3-Shot)
value: 32.88
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: M3Exam-Vietnamese
type: M3Exam-Vietnamese
metrics:
- type: EM (3-Shot)
value: 44.1
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: BELEBELE-Thai
type: BELEBELE-Thai
metrics:
- type: EM (3-Shot)
value: 41.56
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: BELEBELE-Indonesian
type: BELEBELE-Indonesian
metrics:
- type: EM (3-Shot)
value: 44.33
name: EM (3-Shot)
- task:
type: text-generation
dataset:
name: BELEBELE-Vietnamese
type: BELEBELE-Vietnamese
metrics:
- type: EM (3-Shot)
value: 45.33
name: EM (3-Shot)
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
sail/Sailor-7B - GGUF
This repo contains GGUF format model files for sail/Sailor-7B.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Sailor-7B-Q2_K.gguf | Q2_K | 3.104 GB | smallest, significant quality loss - not recommended for most purposes |
Sailor-7B-Q3_K_S.gguf | Q3_K_S | 3.569 GB | very small, high quality loss |
Sailor-7B-Q3_K_M.gguf | Q3_K_M | 3.919 GB | very small, high quality loss |
Sailor-7B-Q3_K_L.gguf | Q3_K_L | 4.218 GB | small, substantial quality loss |
Sailor-7B-Q4_0.gguf | Q4_0 | 4.512 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Sailor-7B-Q4_K_S.gguf | Q4_K_S | 4.543 GB | small, greater quality loss |
Sailor-7B-Q4_K_M.gguf | Q4_K_M | 4.767 GB | medium, balanced quality - recommended |
Sailor-7B-Q5_0.gguf | Q5_0 | 5.399 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Sailor-7B-Q5_K_S.gguf | Q5_K_S | 5.399 GB | large, low quality loss - recommended |
Sailor-7B-Q5_K_M.gguf | Q5_K_M | 5.531 GB | large, very low quality loss - recommended |
Sailor-7B-Q6_K.gguf | Q6_K | 6.342 GB | very large, extremely low quality loss |
Sailor-7B-Q8_0.gguf | Q8_0 | 8.212 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Sailor-7B-GGUF --include "Sailor-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Sailor-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'