metadata
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
license: mit
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
- TensorBlock
- GGUF
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
base_model: fluently-lm/FluentlyLM-Prinum
model-index:
- name: FluentlyLM-Prinum
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.9
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 59.48
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 54
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.23
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.26
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.42
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
fluently-lm/FluentlyLM-Prinum - GGUF
This repo contains GGUF format model files for fluently-lm/FluentlyLM-Prinum.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4823.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
FluentlyLM-Prinum-Q2_K.gguf | Q2_K | 12.313 GB | smallest, significant quality loss - not recommended for most purposes |
FluentlyLM-Prinum-Q3_K_S.gguf | Q3_K_S | 14.392 GB | very small, high quality loss |
FluentlyLM-Prinum-Q3_K_M.gguf | Q3_K_M | 15.935 GB | very small, high quality loss |
FluentlyLM-Prinum-Q3_K_L.gguf | Q3_K_L | 17.247 GB | small, substantial quality loss |
FluentlyLM-Prinum-Q4_0.gguf | Q4_0 | 18.640 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
FluentlyLM-Prinum-Q4_K_S.gguf | Q4_K_S | 18.784 GB | small, greater quality loss |
FluentlyLM-Prinum-Q4_K_M.gguf | Q4_K_M | 19.851 GB | medium, balanced quality - recommended |
FluentlyLM-Prinum-Q5_0.gguf | Q5_0 | 22.638 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
FluentlyLM-Prinum-Q5_K_S.gguf | Q5_K_S | 22.638 GB | large, low quality loss - recommended |
FluentlyLM-Prinum-Q5_K_M.gguf | Q5_K_M | 23.262 GB | large, very low quality loss - recommended |
FluentlyLM-Prinum-Q6_K.gguf | Q6_K | 26.886 GB | very large, extremely low quality loss |
FluentlyLM-Prinum-Q8_0.gguf | Q8_0 | 34.821 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --include "FluentlyLM-Prinum-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'