File size: 45,286 Bytes
313605b 4c8620a 4296023 6740b78 9901878 bae67bf ba8e699 2fff224 313605b 4d3fe36 af17ca0 6be1fe2 ddaefda 4078885 4d3fe36 5813597 7314969 bae67bf 7fcc6aa cbc7abf 7fcc6aa 16b7f0b 1580847 16b7f0b 2d342e6 1211b2c 7332a9f 91ee28f 8e3da9c 76c71cc 8e3da9c 84eaeb7 bae67bf 84eaeb7 bae67bf fc75899 86543ba 7fcc6aa 86543ba 3c1dd86 86543ba e72ee33 3c1dd86 64c7900 3c1dd86 fc75899 e72ee33 bae67bf 22197b0 6b0a5df 7206b9b 182b468 7206b9b 2d342e6 e5dce64 2d342e6 e5dce64 2d342e6 7fcc6aa 2d342e6 22197b0 2d342e6 22197b0 2d342e6 e5dce64 22197b0 2d342e6 22197b0 e5dce64 429db12 1d68708 7dae4a0 429db12 7fcc6aa b4ef3d5 1d68708 7dae4a0 1d68708 7dae4a0 4c8620a 7dae4a0 1d68708 7dae4a0 1d68708 429db12 1d68708 429db12 6b0a5df 1d68708 6b0a5df 2d342e6 d155e37 8ea742a 2d342e6 8ea742a 2d342e6 8ea742a 2d342e6 8ea742a 2d342e6 22197b0 2d342e6 22197b0 2d342e6 91ee28f 2d342e6 91ee28f 2d342e6 e5dce64 2d342e6 91ee28f e5dce64 2d342e6 bae67bf 2d342e6 8d91d51 91ee28f a8ece5f 91ee28f c31239d ba8e699 7fcc6aa 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 22197b0 ba8e699 2f8cff3 ba8e699 2f8cff3 ba8e699 91ee28f ba8e699 22197b0 ba8e699 22197b0 ba8e699 91ee28f c31239d 91ee28f 22197b0 91ee28f 6001b99 c31239d 91ee28f c31239d 91ee28f c31239d 91ee28f 6001b99 91ee28f 6001b99 91ee28f 6001b99 ba8e699 09735d0 64c7900 09735d0 bae67bf 84eaeb7 22197b0 bae67bf 16b7f0b 8e3da9c 6582081 8e3da9c 6582081 76c71cc 6582081 76c71cc e6b81d7 6582081 6740b78 76f9b1e 6740b78 2d342e6 6740b78 4296023 6740b78 09f7c23 6740b78 5c8687e 6740b78 fccd514 09735d0 ba8e699 2d342e6 7314969 ba8e699 22197b0 2d342e6 22197b0 91ee28f ba8e699 09f7c23 3ae260c ba8e699 7191bab 6740b78 7191bab 6740b78 3ae260c 6740b78 c31239d 22197b0 4078885 22197b0 c31239d 22197b0 4078885 c31239d b34c36b 76c71cc b34c36b c31239d 4497eab 2d342e6 7314969 4497eab 2d342e6 4497eab 060d67a 4497eab 47be5c2 6740b78 3a2edd7 1d68708 d9647ee 7314969 d9647ee 99a5694 d9647ee 7fcc6aa d9647ee 4078885 d9647ee 4078885 d9647ee 99a5694 d9647ee 4078885 d9647ee 4078885 d9647ee 76c71cc d9647ee 4078885 d9647ee 6740b78 2d342e6 060d67a 6740b78 470a33a 6740b78 2d342e6 6740b78 470a33a 6740b78 470a33a 2d342e6 1d68708 485c6ba 470a33a 7314969 485c6ba 470a33a f101853 470a33a 485c6ba 470a33a 429db12 470a33a 0b44cfe cc1fa0d 470a33a 485c6ba 470a33a 485c6ba 470a33a 76c71cc 470a33a 485c6ba 470a33a 485c6ba 470a33a e4f11d7 e41a0bb e4f11d7 470a33a 485c6ba f101853 470a33a 485c6ba 470a33a 485c6ba 76c71cc 470a33a f101853 485c6ba 470a33a f101853 b918005 df482ac b918005 470a33a 1d68708 b918005 4497eab 861a23a 3a2edd7 6740b78 df482ac fad8f5f df482ac 470a33a df482ac 470a33a df482ac 470a33a df482ac 470a33a df482ac 470a33a f101853 df482ac 470a33a df482ac 470a33a df482ac 470a33a df482ac 1d68708 470a33a df482ac 470a33a df482ac 76c71cc 470a33a df482ac 6740b78 3a2edd7 6740b78 df482ac 6740b78 df482ac 4078885 6740b78 df482ac 1d68708 df482ac 485c6ba 470a33a df482ac 6740b78 3a2edd7 df482ac 76c71cc 485c6ba 470a33a 485c6ba b918005 4078885 3a2edd7 99a5694 bae67bf 4078885 db69584 22197b0 4078885 22197b0 16b7f0b 4078885 db69584 ba8e699 4078885 ba8e699 313605b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 |
import os,time,logging,requests,json,uuid,concurrent.futures,threading,base64,io
from io import BytesIO
from itertools import chain
from PIL import Image
from datetime import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from flask import Flask, request, jsonify, Response, stream_with_context
from werkzeug.middleware.proxy_fix import ProxyFix
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
os.environ['TZ'] = 'Asia/Shanghai'
time.tzset()
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info"
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions"
MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models"
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings"
IMAGE_ENDPOINT = "https://api-st.siliconflow.cn/v1/images/generations"
def requests_session_with_retries(
retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504)
):
session = requests.Session()
retry = Retry(
total=retries,
read=retries,
connect=retries,
backoff_factor=backoff_factor,
status_forcelist=status_forcelist,
)
adapter = HTTPAdapter(
max_retries=retry,
pool_connections=1000,
pool_maxsize=10000,
pool_block=False
)
session.mount("http://", adapter)
session.mount("https://", adapter)
return session
session = requests_session_with_retries()
app = Flask(__name__)
app.wsgi_app = ProxyFix(app.wsgi_app, x_for=1)
models = {
"text": [],
"free_text": [],
"embedding": [],
"free_embedding": [],
"image": [],
"free_image": []
}
key_status = {
"invalid": [],
"free": [],
"unverified": [],
"valid": []
}
executor = concurrent.futures.ThreadPoolExecutor(max_workers=10000)
model_key_indices = {}
request_timestamps = []
token_counts = []
request_timestamps_day = []
token_counts_day = []
data_lock = threading.Lock()
def get_credit_summary(api_key):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
max_retries = 3
for attempt in range(max_retries):
try:
response = session.get(API_ENDPOINT, headers=headers, timeout=2)
response.raise_for_status()
data = response.json().get("data", {})
total_balance = data.get("totalBalance", 0)
logging.info(f"获取额度,API Key:{api_key},当前额度: {total_balance}")
return {"total_balance": float(total_balance)}
except requests.exceptions.Timeout as e:
logging.error(f"获取额度信息失败,API Key:{api_key},尝试次数:{attempt+1}/{max_retries},错误信息:{e} (Timeout)")
if attempt >= max_retries - 1:
logging.error(f"获取额度信息失败,API Key:{api_key},所有重试次数均已失败 (Timeout)")
except requests.exceptions.RequestException as e:
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}")
return None
FREE_MODEL_TEST_KEY = (
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw"
)
FREE_IMAGE_LIST = [
"stabilityai/stable-diffusion-3-5-large",
"black-forest-labs/FLUX.1-schnell",
"stabilityai/stable-diffusion-3-medium",
"stabilityai/stable-diffusion-xl-base-1.0",
"stabilityai/stable-diffusion-2-1"
]
def test_model_availability(api_key, model_name, model_type="chat"):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_type == "image":
return model_name in FREE_IMAGE_LIST
try:
endpoint = EMBEDDINGS_ENDPOINT if model_type == "embedding" else TEST_MODEL_ENDPOINT
payload = (
{"model": model_name, "input": ["hi"]}
if model_type == "embedding"
else {"model": model_name, "messages": [{"role": "user", "content": "hi"}], "max_tokens": 5, "stream": False}
)
timeout = 10 if model_type == "embedding" else 5
response = session.post(
endpoint,
headers=headers,
json=payload,
timeout=timeout
)
return response.status_code in [200, 429]
except requests.exceptions.RequestException as e:
logging.error(
f"测试{model_type}模型 {model_name} 可用性失败,"
f"API Key:{api_key},错误信息:{e}"
)
return False
def process_image_url(image_url, response_format=None):
if not image_url:
return {"url": ""}
if response_format == "b64_json":
try:
response = session.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {"b64_json": img_str}
except Exception as e:
logging.error(f"图片转base64失败: {e}")
return {"url": image_url}
return {"url": image_url}
def create_base64_markdown_image(image_url):
try:
response = session.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
new_size = tuple(dim // 4 for dim in image.size)
resized_image = image.resize(new_size, Image.LANCZOS)
buffered = BytesIO()
resized_image.save(buffered, format="PNG")
base64_encoded = base64.b64encode(buffered.getvalue()).decode('utf-8')
markdown_image_link = f"![](data:image/png;base64,{base64_encoded})"
logging.info("Created base64 markdown image link.")
return markdown_image_link
except Exception as e:
logging.error(f"Error creating markdown image: {e}")
return None
def extract_user_content(messages):
user_content = ""
for message in messages:
if message["role"] == "user":
if isinstance(message["content"], str):
user_content += message["content"] + " "
elif isinstance(message["content"], list):
for item in message["content"]:
if isinstance(item, dict) and item.get("type") == "text":
user_content += item.get("text", "") + " "
return user_content.strip()
def get_siliconflow_data(model_name, data):
siliconflow_data = {
"model": model_name,
"prompt": data.get("prompt") or "",
}
if model_name == "black-forest-labs/FLUX.1-pro":
siliconflow_data.update({
"width": max(256, min(1440, (data.get("width", 1024) // 32) * 32)),
"height": max(256, min(1440, (data.get("height", 768) // 32) * 32)),
"prompt_upsampling": data.get("prompt_upsampling", False),
"image_prompt": data.get("image_prompt"),
"steps": max(1, min(50, data.get("steps", 20))),
"guidance": max(1.5, min(5, data.get("guidance", 3))),
"safety_tolerance": max(0, min(6, data.get("safety_tolerance", 2))),
"interval": max(1, min(4, data.get("interval", 2))),
"output_format": data.get("output_format", "png")
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
else:
siliconflow_data.update({
"image_size": data.get("image_size", "1024x1024"),
"prompt_enhancement": data.get("prompt_enhancement", False)
})
seed = data.get("seed")
if isinstance(seed, int) and 0 < seed < 9999999999:
siliconflow_data["seed"] = seed
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
siliconflow_data.update({
"batch_size": max(1, min(4, data.get("n", 1))),
"num_inference_steps": max(1, min(50, data.get("steps", 20))),
"guidance_scale": max(0, min(100, data.get("guidance_scale", 7.5))),
"negative_prompt": data.get("negative_prompt")
})
valid_sizes = ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in valid_sizes:
siliconflow_data["image_size"] = "1024x1024"
return siliconflow_data
def refresh_models():
global models
models["text"] = get_all_models(FREE_MODEL_TEST_KEY, "chat")
models["embedding"] = get_all_models(FREE_MODEL_TEST_KEY, "embedding")
models["image"] = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image")
models["free_text"] = []
models["free_embedding"] = []
models["free_image"] = []
ban_models = []
ban_models_str = os.environ.get("BAN_MODELS")
if ban_models_str:
try:
ban_models = json.loads(ban_models_str)
if not isinstance(ban_models, list):
logging.warning("环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。")
ban_models = []
except json.JSONDecodeError:
logging.warning("环境变量 BAN_MODELS JSON 解析失败,请检查格式。")
models["text"] = [model for model in models["text"] if model not in ban_models]
models["embedding"] = [model for model in models["embedding"] if model not in ban_models]
models["image"] = [model for model in models["image"] if model not in ban_models]
model_types = [
("text", "chat"),
("embedding", "embedding"),
("image", "image")
]
for model_type, test_type in model_types:
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
future_to_model = {
executor.submit(
test_model_availability,
FREE_MODEL_TEST_KEY,
model,
test_type
): model for model in models[model_type]
}
for future in concurrent.futures.as_completed(future_to_model):
model = future_to_model[future]
try:
is_free = future.result()
if is_free:
models[f"free_{model_type}"].append(model)
except Exception as exc:
logging.error(f"{model_type}模型 {model} 测试生成异常: {exc}")
for model_type in ["text", "embedding", "image"]:
logging.info(f"所有{model_type}模型列表:{models[model_type]}")
logging.info(f"免费{model_type}模型列表:{models[f'free_{model_type}']}")
def load_keys():
global key_status
for status in key_status:
key_status[status] = []
keys_str = os.environ.get("KEYS")
if not keys_str:
logging.warning("环境变量 KEYS 未设置。")
return
test_model = os.environ.get("TEST_MODEL", "Pro/google/gemma-2-9b-it")
unique_keys = list(set(key.strip() for key in keys_str.split(',')))
os.environ["KEYS"] = ','.join(unique_keys)
logging.info(f"加载的 keys:{unique_keys}")
def process_key_with_logging(key):
try:
key_type = process_key(key, test_model)
if key_type in key_status:
key_status[key_type].append(key)
return key_type
except Exception as exc:
logging.error(f"处理 KEY {key} 生成异常: {exc}")
return "invalid"
with concurrent.futures.ThreadPoolExecutor(max_workers=10000) as executor:
futures = [executor.submit(process_key_with_logging, key) for key in unique_keys]
concurrent.futures.wait(futures)
for status, keys in key_status.items():
logging.info(f"{status.capitalize()} KEYS: {keys}")
global invalid_keys_global, free_keys_global, unverified_keys_global, valid_keys_global
invalid_keys_global = key_status["invalid"]
free_keys_global = key_status["free"]
unverified_keys_global = key_status["unverified"]
valid_keys_global = key_status["valid"]
def process_key(key, test_model):
credit_summary = get_credit_summary(key)
if credit_summary is None:
return "invalid"
else:
total_balance = credit_summary.get("total_balance", 0)
if total_balance <= 0.03:
return "free"
else:
if test_model_availability(key, test_model):
return "valid"
else:
return "unverified"
def get_all_models(api_key, sub_type):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
response = session.get(
MODELS_ENDPOINT,
headers=headers,
params={"sub_type": sub_type}
)
response.raise_for_status()
data = response.json()
if (
isinstance(data, dict) and
'data' in data and
isinstance(data['data'], list)
):
return [
model.get("id") for model in data["data"]
if isinstance(model, dict) and "id" in model
]
else:
logging.error("获取模型列表失败:响应数据格式不正确")
return []
except requests.exceptions.RequestException as e:
logging.error(
f"获取模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
except (KeyError, TypeError) as e:
logging.error(
f"解析模型列表失败,"
f"API Key:{api_key},错误信息:{e}"
)
return []
def determine_request_type(model_name, model_list, free_model_list):
if model_name in free_model_list:
return "free"
elif model_name in model_list:
return "paid"
else:
return "unknown"
def select_key(request_type, model_name):
if request_type == "free":
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
elif request_type == "paid":
available_keys = unverified_keys_global + valid_keys_global
else:
available_keys = (
free_keys_global +
unverified_keys_global +
valid_keys_global
)
if not available_keys:
return None
current_index = model_key_indices.get(model_name, 0)
for _ in range(len(available_keys)):
key = available_keys[current_index % len(available_keys)]
current_index += 1
if key_is_valid(key, request_type):
model_key_indices[model_name] = current_index
return key
else:
logging.warning(
f"KEY {key} 无效或达到限制,尝试下一个 KEY"
)
model_key_indices[model_name] = 0
return None
def key_is_valid(key, request_type):
if request_type == "invalid":
return False
credit_summary = get_credit_summary(key)
if credit_summary is None:
return False
total_balance = credit_summary.get("total_balance", 0)
if request_type == "free":
return True
elif request_type == "paid" or request_type == "unverified":
return total_balance > 0
else:
return False
def check_authorization(request):
authorization_key = os.environ.get("AUTHORIZATION_KEY")
if not authorization_key:
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,此时无需鉴权即可使用,建议进行设置后再使用。")
return True
auth_header = request.headers.get('Authorization')
if not auth_header:
logging.warning("请求头中缺少 Authorization 字段。")
return False
if auth_header != f"Bearer {authorization_key}":
logging.warning(f"无效的 Authorization 密钥:{auth_header}")
return False
return True
scheduler = BackgroundScheduler()
scheduler.add_job(load_keys, 'interval', hours=1)
scheduler.remove_all_jobs()
scheduler.add_job(refresh_models, 'interval', hours=1)
@app.route('/')
def index():
current_time = time.time()
one_minute_ago = current_time - 60
one_day_ago = current_time - 86400
with data_lock:
while request_timestamps and request_timestamps[0] < one_minute_ago:
request_timestamps.pop(0)
token_counts.pop(0)
rpm = len(request_timestamps)
tpm = sum(token_counts)
with data_lock:
while request_timestamps_day and request_timestamps_day[0] < one_day_ago:
request_timestamps_day.pop(0)
token_counts_day.pop(0)
rpd = len(request_timestamps_day)
tpd = sum(token_counts_day)
return jsonify({"rpm": rpm, "tpm": tpm, "rpd": rpd, "tpd": tpd})
@app.route('/handsome/v1/models', methods=['GET'])
def list_models():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
detailed_models = []
all_models = chain(
models["text"],
models["embedding"],
models["image"]
)
for model in all_models:
detailed_models.append({
"id": model,
"object": "model",
"created": 1678888888,
"owned_by": "openai",
"permission": [],
"root": model,
"parent": None
})
return jsonify({
"success": True,
"data": detailed_models
})
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET'])
def billing_usage():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
daily_usage = []
return jsonify({
"object": "list",
"data": daily_usage,
"total_usage": 0
})
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET'])
def billing_subscription():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
keys = valid_keys_global + unverified_keys_global
total_balance = 0
with concurrent.futures.ThreadPoolExecutor(
max_workers=10000
) as executor:
futures = [
executor.submit(get_credit_summary, key) for key in keys
]
for future in concurrent.futures.as_completed(futures):
try:
credit_summary = future.result()
if credit_summary:
total_balance += credit_summary.get("total_balance", 0)
except Exception as exc:
logging.error(f"获取额度信息生成异常: {exc}")
return jsonify({
"object": "billing_subscription",
"access_until": int(datetime(9999, 12, 31).timestamp()),
"soft_limit": 0,
"hard_limit": total_balance,
"system_hard_limit": total_balance,
"soft_limit_usd": 0,
"hard_limit_usd": total_balance,
"system_hard_limit_usd": total_balance
})
@app.route('/handsome/v1/embeddings', methods=['POST'])
def handsome_embeddings():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["embedding"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["embedding"],
models["free_embedding"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
try:
start_time = time.time()
response = requests.post(
EMBEDDINGS_ENDPOINT,
headers=headers,
json=data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
embedding_data = response_json["data"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
embedding_data = []
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens)
return jsonify({
"object": "list",
"data": embedding_data,
"model": model_name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens
}
})
except requests.exceptions.RequestException as e:
return jsonify({"error": str(e)}), 500
@app.route('/handsome/v1/images/generations', methods=['POST'])
def handsome_images_generations():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data.get('model')
request_type = determine_request_type(
model_name,
models["image"],
models["free_image"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify({"error": ("No available API key for this request type or all keys have reached their limits")}), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
response_data = {}
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
siliconflow_data = get_siliconflow_data(model_name, data)
try:
start_time = time.time()
response = requests.post(
IMAGE_ENDPOINT,
headers=headers,
json=siliconflow_data,
timeout=120
)
if response.status_code == 429:
return jsonify(response.json()), 429
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
openai_images = []
for item in images:
if isinstance(item, dict) and "url" in item:
image_url = item["url"]
print(f"image_url: {image_url}")
if data.get("response_format") == "b64_json":
try:
image_data = session.get(image_url, stream=True).raw
image = Image.open(image_data)
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
openai_images.append({"b64_json": img_str})
except Exception as e:
logging.error(f"图片转base64失败: {e}")
openai_images.append({"url": image_url})
else:
openai_images.append({"url": image_url})
else:
logging.error(f"无效的图片数据: {item}")
openai_images.append({"url": item})
response_data = {
"created": int(time.time()),
"data": openai_images
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"created": int(time.time()),
"data": []
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
return jsonify({"error": "Unsupported model"}), 400
@app.route('/handsome/v1/chat/completions', methods=['POST'])
def handsome_chat_completions():
if not check_authorization(request):
return jsonify({"error": "Unauthorized"}), 401
data = request.get_json()
if not data or 'model' not in data:
return jsonify({"error": "Invalid request data"}), 400
if data['model'] not in models["text"] and data['model'] not in models["image"]:
return jsonify({"error": "Invalid model"}), 400
model_name = data['model']
request_type = determine_request_type(
model_name,
models["text"] + models["image"],
models["free_text"] + models["free_image"]
)
api_key = select_key(request_type, model_name)
if not api_key:
return jsonify(
{
"error": (
"No available API key for this "
"request type or all keys have "
"reached their limits"
)
}
), 429
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
if model_name in models["image"]:
if isinstance(data.get("messages"), list):
data = data.copy()
data["prompt"] = extract_user_content(data["messages"])
siliconflow_data = get_siliconflow_data(model_name, data)
try:
start_time = time.time()
response = requests.post(
IMAGE_ENDPOINT,
headers=headers,
json=siliconflow_data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
try:
response.raise_for_status()
response_json = response.json()
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = create_base64_markdown_image(image_url)
if image_url:
chunk_size = 8192
for i in range(0, len(markdown_image_link), chunk_size):
chunk = markdown_image_link[i:i + chunk_size]
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": chunk
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
else:
chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": "Failed to generate image"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
error_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": f"Error: {str(e)}"
},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
end_chunk_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
logging.info(
f"使用的key: {api_key}, "
f"使用的模型: {model_name}"
)
yield "data: [DONE]\n\n".encode('utf-8')
return Response(stream_with_context(generate()), content_type='text/event-stream')
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
images = response_json.get("images", [])
image_url = ""
if images and isinstance(images[0], dict) and "url" in images[0]:
image_url = images[0]["url"]
logging.info(f"Extracted image URL: {image_url}")
elif images and isinstance(images[0], str):
image_url = images[0]
logging.info(f"Extracted image URL: {image_url}")
markdown_image_link = f"![image]({image_url})"
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": markdown_image_link if image_url else "Failed to generate image",
},
"finish_reason": "stop",
}
],
}
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
response_data = {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(time.time()),
"model": model_name,
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Failed to process image data",
},
"finish_reason": "stop",
}
],
}
logging.info(
f"使用的key: {api_key}, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(0)
request_timestamps_day.append(time.time())
token_counts_day.append(0)
return jsonify(response_data)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
else:
try:
start_time = time.time()
response = requests.post(
TEST_MODEL_ENDPOINT,
headers=headers,
json=data,
stream=data.get("stream", False)
)
if response.status_code == 429:
return jsonify(response.json()), 429
if data.get("stream", False):
def generate():
first_chunk_time = None
full_response_content = ""
for chunk in response.iter_content(chunk_size=2048):
if chunk:
if first_chunk_time is None:
first_chunk_time = time.time()
full_response_content += chunk.decode("utf-8")
yield chunk
end_time = time.time()
first_token_time = (
first_chunk_time - start_time
if first_chunk_time else 0
)
total_time = end_time - start_time
prompt_tokens = 0
completion_tokens = 0
response_content = ""
for line in full_response_content.splitlines():
if line.startswith("data:"):
line = line[5:].strip()
if line == "[DONE]":
continue
try:
response_json = json.loads(line)
if (
"usage" in response_json and
"completion_tokens" in response_json["usage"]
):
completion_tokens = response_json[
"usage"
]["completion_tokens"]
if (
"choices" in response_json and
len(response_json["choices"]) > 0 and
"delta" in response_json["choices"][0] and
"content" in response_json[
"choices"
][0]["delta"]
):
response_content += response_json[
"choices"
][0]["delta"]["content"]
if (
"usage" in response_json and
"prompt_tokens" in response_json["usage"]
):
prompt_tokens = response_json[
"usage"
]["prompt_tokens"]
except (
KeyError,
ValueError,
IndexError
) as e:
logging.error(
f"解析流式响应单行 JSON 失败: {e}, "
f"行内容: {line}"
)
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: {first_token_time:.4f}秒, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
token_counts.append(prompt_tokens+completion_tokens)
request_timestamps_day.append(time.time())
token_counts_day.append(prompt_tokens+completion_tokens)
return Response(
stream_with_context(generate()),
content_type=response.headers['Content-Type']
)
else:
response.raise_for_status()
end_time = time.time()
response_json = response.json()
total_time = end_time - start_time
try:
prompt_tokens = response_json["usage"]["prompt_tokens"]
completion_tokens = response_json[
"usage"
]["completion_tokens"]
response_content = response_json[
"choices"
][0]["message"]["content"]
except (KeyError, ValueError, IndexError) as e:
logging.error(
f"解析非流式响应 JSON 失败: {e}, "
f"完整内容: {response_json}"
)
prompt_tokens = 0
completion_tokens = 0
response_content = ""
user_content = extract_user_content(data.get("messages", []))
user_content_replaced = user_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
response_content_replaced = response_content.replace(
'\n', '\\n'
).replace('\r', '\\n')
logging.info(
f"使用的key: {api_key}, "
f"提示token: {prompt_tokens}, "
f"输出token: {completion_tokens}, "
f"首字用时: 0, "
f"总共用时: {total_time:.4f}秒, "
f"使用的模型: {model_name}, "
f"用户的内容: {user_content_replaced}, "
f"输出的内容: {response_content_replaced}"
)
with data_lock:
request_timestamps.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts.append(0)
request_timestamps_day.append(time.time())
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
token_counts_day.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"])
else:
token_counts_day.append(0)
return jsonify(response_json)
except requests.exceptions.RequestException as e:
logging.error(f"请求转发异常: {e}")
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
logging.info(f"环境变量:{os.environ}")
load_keys()
logging.info("程序启动时首次加载 keys 已执行")
scheduler.start()
logging.info("首次加载 keys 已手动触发执行")
refresh_models()
logging.info("首次刷新模型列表已手动触发执行")
app.run(debug=False,host='0.0.0.0',port=int(os.environ.get('PORT', 7860))) |