Update app.py
Browse files
app.py
CHANGED
@@ -840,39 +840,66 @@ def handsome_images_generations():
|
|
840 |
|
841 |
response_data = {}
|
842 |
|
843 |
-
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
844 |
|
845 |
siliconflow_data = {
|
846 |
"model": model_name,
|
847 |
"prompt": data.get("prompt"),
|
848 |
-
|
849 |
-
"prompt_enhancement": data.get("prompt_enhancement", False),
|
850 |
}
|
851 |
-
seed = data.get("seed")
|
852 |
-
if isinstance(seed, int) and 0 < seed < 9999999999:
|
853 |
-
siliconflow_data["seed"] = seed
|
854 |
|
855 |
-
if model_name
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
874 |
# Validate image_size
|
875 |
-
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024"]:
|
876 |
siliconflow_data["image_size"] = "1024x1024"
|
877 |
|
878 |
try:
|
@@ -1008,45 +1035,71 @@ def handsome_chat_completions():
|
|
1008 |
siliconflow_data = {
|
1009 |
"model": model_name,
|
1010 |
"prompt": user_content,
|
1011 |
-
|
1012 |
-
"batch_size": 1,
|
1013 |
-
"num_inference_steps": 20,
|
1014 |
-
"guidance_scale": 7.5,
|
1015 |
-
"prompt_enhancement": False,
|
1016 |
}
|
1017 |
-
|
1018 |
-
|
1019 |
-
siliconflow_data["
|
1020 |
-
|
1021 |
-
siliconflow_data["
|
1022 |
-
|
1023 |
-
siliconflow_data["
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
1027 |
-
|
1028 |
-
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1034 |
siliconflow_data["batch_size"] = 1
|
1035 |
-
|
1036 |
-
siliconflow_data["
|
1037 |
-
|
1038 |
-
if siliconflow_data["num_inference_steps"] < 1:
|
1039 |
-
siliconflow_data["num_inference_steps"] = 1
|
1040 |
-
if siliconflow_data["num_inference_steps"] > 50:
|
1041 |
-
siliconflow_data["num_inference_steps"] = 50
|
1042 |
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1050 |
|
1051 |
try:
|
1052 |
start_time = time.time()
|
@@ -1151,33 +1204,14 @@ def handsome_chat_completions():
|
|
1151 |
"index": 0,
|
1152 |
"delta": {
|
1153 |
"role": "assistant",
|
1154 |
-
"content":
|
1155 |
},
|
1156 |
-
"finish_reason": None
|
1157 |
-
}
|
1158 |
-
]
|
1159 |
-
}
|
1160 |
-
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1161 |
-
end_chunk_data = {
|
1162 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1163 |
-
"object": "chat.completion.chunk",
|
1164 |
-
"created": int(time.time()),
|
1165 |
-
"model": model_name,
|
1166 |
-
"choices": [
|
1167 |
-
{
|
1168 |
-
"index": 0,
|
1169 |
-
"delta": {},
|
1170 |
"finish_reason": "stop"
|
1171 |
}
|
1172 |
]
|
1173 |
}
|
1174 |
-
yield f"data: {json.dumps(
|
1175 |
-
|
1176 |
-
logging.info(
|
1177 |
-
f"使用的key: {api_key}, "
|
1178 |
-
f"使用的模型: {model_name}"
|
1179 |
-
)
|
1180 |
-
yield "data: [DONE]\n\n".encode('utf-8')
|
1181 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
1182 |
else:
|
1183 |
response.raise_for_status()
|
@@ -1246,15 +1280,11 @@ def handsome_chat_completions():
|
|
1246 |
token_counts.append(0)
|
1247 |
|
1248 |
return jsonify(response_data)
|
1249 |
-
except requests.exceptions.RequestException as e:
|
1250 |
-
logging.error(f"请求转发异常: {e}")
|
1251 |
-
return jsonify({"error": str(e)}), 500
|
1252 |
else:
|
1253 |
-
# Handle text completion
|
1254 |
try:
|
1255 |
start_time = time.time()
|
1256 |
response = requests.post(
|
1257 |
-
|
1258 |
headers=headers,
|
1259 |
json=data,
|
1260 |
timeout=120,
|
@@ -1262,45 +1292,16 @@ def handsome_chat_completions():
|
|
1262 |
)
|
1263 |
|
1264 |
if response.status_code == 429:
|
1265 |
-
|
1266 |
-
|
1267 |
if data.get("stream", False):
|
1268 |
def generate():
|
1269 |
-
first_chunk_time = None
|
1270 |
-
full_response_content = ""
|
1271 |
try:
|
1272 |
-
|
|
|
1273 |
if chunk:
|
1274 |
-
|
1275 |
-
|
1276 |
-
try:
|
1277 |
-
json_chunk = json.loads(chunk.lstrip("data: "))
|
1278 |
-
if "choices" in json_chunk and json_chunk["choices"]:
|
1279 |
-
delta = json_chunk["choices"][0].get("delta", {})
|
1280 |
-
content = delta.get("content", "")
|
1281 |
-
full_response_content += content
|
1282 |
-
yield f"data: {json.dumps(json_chunk)}\n\n".encode('utf-8')
|
1283 |
-
except json.JSONDecodeError:
|
1284 |
-
logging.error(f"JSON解析失败: {chunk}")
|
1285 |
-
|
1286 |
-
end_chunk_data = {
|
1287 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1288 |
-
"object": "chat.completion.chunk",
|
1289 |
-
"created": int(time.time()),
|
1290 |
-
"model": model_name,
|
1291 |
-
"choices": [
|
1292 |
-
{
|
1293 |
-
"index": 0,
|
1294 |
-
"delta": {},
|
1295 |
-
"finish_reason": "stop"
|
1296 |
-
}
|
1297 |
-
]
|
1298 |
-
}
|
1299 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1300 |
-
|
1301 |
-
with data_lock:
|
1302 |
-
request_timestamps.append(time.time())
|
1303 |
-
token_counts.append(0)
|
1304 |
except requests.exceptions.RequestException as e:
|
1305 |
logging.error(f"请求转发异常: {e}")
|
1306 |
error_chunk_data = {
|
@@ -1313,40 +1314,21 @@ def handsome_chat_completions():
|
|
1313 |
"index": 0,
|
1314 |
"delta": {
|
1315 |
"role": "assistant",
|
1316 |
-
"content":
|
1317 |
},
|
1318 |
-
"finish_reason":
|
1319 |
}
|
1320 |
]
|
1321 |
-
|
1322 |
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1323 |
-
|
1324 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
1325 |
-
"object": "chat.completion.chunk",
|
1326 |
-
"created": int(time.time()),
|
1327 |
-
"model": model_name,
|
1328 |
-
"choices": [
|
1329 |
-
{
|
1330 |
-
"index": 0,
|
1331 |
-
"delta": {},
|
1332 |
-
"finish_reason": "stop"
|
1333 |
-
}
|
1334 |
-
]
|
1335 |
-
}
|
1336 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
1337 |
-
logging.info(
|
1338 |
-
f"使用的key: {api_key}, "
|
1339 |
-
f"使用的模型: {model_name}"
|
1340 |
-
)
|
1341 |
-
yield "data: [DONE]\n\n".encode('utf-8')
|
1342 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
1343 |
-
|
1344 |
else:
|
1345 |
response.raise_for_status()
|
1346 |
end_time = time.time()
|
1347 |
response_json = response.json()
|
1348 |
total_time = end_time - start_time
|
1349 |
-
|
1350 |
try:
|
1351 |
choices = response_json.get("choices", [])
|
1352 |
if choices and isinstance(choices[0], dict):
|
@@ -1406,20 +1388,21 @@ def handsome_chat_completions():
|
|
1406 |
}
|
1407 |
]
|
1408 |
}
|
1409 |
-
|
1410 |
logging.info(
|
1411 |
-
|
1412 |
-
|
1413 |
-
|
1414 |
)
|
|
|
1415 |
with data_lock:
|
1416 |
-
|
1417 |
-
|
|
|
1418 |
return jsonify(response_data)
|
1419 |
-
|
1420 |
except requests.exceptions.RequestException as e:
|
1421 |
-
|
1422 |
-
|
1423 |
|
1424 |
if __name__ == '__main__':
|
1425 |
import json
|
|
|
840 |
|
841 |
response_data = {}
|
842 |
|
843 |
+
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
|
844 |
|
845 |
siliconflow_data = {
|
846 |
"model": model_name,
|
847 |
"prompt": data.get("prompt"),
|
848 |
+
|
|
|
849 |
}
|
|
|
|
|
|
|
850 |
|
851 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
852 |
+
siliconflow_data["width"] = data.get("width", 1024)
|
853 |
+
siliconflow_data["height"] = data.get("height", 768)
|
854 |
+
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
855 |
+
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
856 |
+
siliconflow_data["steps"] = data.get("steps", 20)
|
857 |
+
siliconflow_data["guidance"] = data.get("guidance", 3)
|
858 |
+
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
859 |
+
siliconflow_data["interval"] = data.get("interval", 2)
|
860 |
+
siliconflow_data["output_format"] = data.get("output_format", "png")
|
861 |
+
|
862 |
+
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
863 |
+
siliconflow_data["width"] = 1024
|
864 |
+
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
865 |
+
siliconflow_data["height"] = 768
|
866 |
+
|
867 |
+
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
868 |
+
siliconflow_data["steps"] = 20
|
869 |
+
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
870 |
+
siliconflow_data["guidance"] = 3
|
871 |
+
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
872 |
+
siliconflow_data["safety_tolerance"] = 2
|
873 |
+
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
874 |
+
siliconflow_data["interval"] = 2
|
875 |
+
else:
|
876 |
+
siliconflow_data["image_size"] = data.get("image_size", "1024x1024") # Use 'image_size' directly
|
877 |
+
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False)
|
878 |
+
seed = data.get("seed")
|
879 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
880 |
+
siliconflow_data["seed"] = seed
|
881 |
+
|
882 |
+
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
883 |
+
siliconflow_data["batch_size"] = data.get("n", 1)
|
884 |
+
siliconflow_data["num_inference_steps"] = data.get("steps", 20)
|
885 |
+
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5)
|
886 |
+
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
887 |
+
if siliconflow_data["batch_size"] < 1:
|
888 |
+
siliconflow_data["batch_size"] = 1
|
889 |
+
if siliconflow_data["batch_size"] > 4:
|
890 |
+
siliconflow_data["batch_size"] = 4
|
891 |
+
|
892 |
+
if siliconflow_data["num_inference_steps"] < 1:
|
893 |
+
siliconflow_data["num_inference_steps"] = 1
|
894 |
+
if siliconflow_data["num_inference_steps"] > 50:
|
895 |
+
siliconflow_data["num_inference_steps"] = 50
|
896 |
+
|
897 |
+
if siliconflow_data["guidance_scale"] < 0:
|
898 |
+
siliconflow_data["guidance_scale"] = 0
|
899 |
+
if siliconflow_data["guidance_scale"] > 100:
|
900 |
+
siliconflow_data["guidance_scale"] = 100
|
901 |
# Validate image_size
|
902 |
+
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]:
|
903 |
siliconflow_data["image_size"] = "1024x1024"
|
904 |
|
905 |
try:
|
|
|
1035 |
siliconflow_data = {
|
1036 |
"model": model_name,
|
1037 |
"prompt": user_content,
|
1038 |
+
|
|
|
|
|
|
|
|
|
1039 |
}
|
1040 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
1041 |
+
siliconflow_data["width"] = data.get("width", 1024)
|
1042 |
+
siliconflow_data["height"] = data.get("height", 768)
|
1043 |
+
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
1044 |
+
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
1045 |
+
siliconflow_data["steps"] = data.get("steps", 20)
|
1046 |
+
siliconflow_data["guidance"] = data.get("guidance", 3)
|
1047 |
+
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
1048 |
+
siliconflow_data["interval"] = data.get("interval", 2)
|
1049 |
+
siliconflow_data["output_format"] = data.get("output_format", "png")
|
1050 |
+
|
1051 |
+
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
1052 |
+
siliconflow_data["width"] = 1024
|
1053 |
+
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
1054 |
+
siliconflow_data["height"] = 768
|
1055 |
+
|
1056 |
+
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
1057 |
+
siliconflow_data["steps"] = 20
|
1058 |
+
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
1059 |
+
siliconflow_data["guidance"] = 3
|
1060 |
+
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
1061 |
+
siliconflow_data["safety_tolerance"] = 2
|
1062 |
+
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
1063 |
+
siliconflow_data["interval"] = 2
|
1064 |
+
else:
|
1065 |
+
siliconflow_data["image_size"] = "1024x1024"
|
1066 |
siliconflow_data["batch_size"] = 1
|
1067 |
+
siliconflow_data["num_inference_steps"] = 20
|
1068 |
+
siliconflow_data["guidance_scale"] = 7.5
|
1069 |
+
siliconflow_data["prompt_enhancement"] = False
|
|
|
|
|
|
|
|
|
1070 |
|
1071 |
+
if data.get("size"):
|
1072 |
+
siliconflow_data["image_size"] = data.get("size")
|
1073 |
+
if data.get("n"):
|
1074 |
+
siliconflow_data["batch_size"] = data.get("n")
|
1075 |
+
if data.get("steps"):
|
1076 |
+
siliconflow_data["num_inference_steps"] = data.get("steps")
|
1077 |
+
if data.get("guidance_scale"):
|
1078 |
+
siliconflow_data["guidance_scale"] = data.get("guidance_scale")
|
1079 |
+
if data.get("negative_prompt"):
|
1080 |
+
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
1081 |
+
if data.get("seed"):
|
1082 |
+
siliconflow_data["seed"] = data.get("seed")
|
1083 |
+
if data.get("prompt_enhancement"):
|
1084 |
+
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement")
|
1085 |
+
|
1086 |
+
if siliconflow_data["batch_size"] < 1:
|
1087 |
+
siliconflow_data["batch_size"] = 1
|
1088 |
+
if siliconflow_data["batch_size"] > 4:
|
1089 |
+
siliconflow_data["batch_size"] = 4
|
1090 |
+
|
1091 |
+
if siliconflow_data["num_inference_steps"] < 1:
|
1092 |
+
siliconflow_data["num_inference_steps"] = 1
|
1093 |
+
if siliconflow_data["num_inference_steps"] > 50:
|
1094 |
+
siliconflow_data["num_inference_steps"] = 50
|
1095 |
+
|
1096 |
+
if siliconflow_data["guidance_scale"] < 0:
|
1097 |
+
siliconflow_data["guidance_scale"] = 0
|
1098 |
+
if siliconflow_data["guidance_scale"] > 100:
|
1099 |
+
siliconflow_data["guidance_scale"] = 100
|
1100 |
+
|
1101 |
+
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]:
|
1102 |
+
siliconflow_data["image_size"] = "1024x1024"
|
1103 |
|
1104 |
try:
|
1105 |
start_time = time.time()
|
|
|
1204 |
"index": 0,
|
1205 |
"delta": {
|
1206 |
"role": "assistant",
|
1207 |
+
"content": "Failed to process image data"
|
1208 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1209 |
"finish_reason": "stop"
|
1210 |
}
|
1211 |
]
|
1212 |
}
|
1213 |
+
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1214 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
1215 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
1216 |
else:
|
1217 |
response.raise_for_status()
|
|
|
1280 |
token_counts.append(0)
|
1281 |
|
1282 |
return jsonify(response_data)
|
|
|
|
|
|
|
1283 |
else:
|
|
|
1284 |
try:
|
1285 |
start_time = time.time()
|
1286 |
response = requests.post(
|
1287 |
+
"https://api.siliconflow.cn/v1/chat/completions",
|
1288 |
headers=headers,
|
1289 |
json=data,
|
1290 |
timeout=120,
|
|
|
1292 |
)
|
1293 |
|
1294 |
if response.status_code == 429:
|
1295 |
+
return jsonify(response.json()), 429
|
1296 |
+
|
1297 |
if data.get("stream", False):
|
1298 |
def generate():
|
|
|
|
|
1299 |
try:
|
1300 |
+
response.raise_for_status()
|
1301 |
+
for chunk in response.iter_lines():
|
1302 |
if chunk:
|
1303 |
+
chunk = chunk.decode('utf-8')
|
1304 |
+
yield f"{chunk}\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1305 |
except requests.exceptions.RequestException as e:
|
1306 |
logging.error(f"请求转发异常: {e}")
|
1307 |
error_chunk_data = {
|
|
|
1314 |
"index": 0,
|
1315 |
"delta": {
|
1316 |
"role": "assistant",
|
1317 |
+
"content": "Failed to process data"
|
1318 |
},
|
1319 |
+
"finish_reason": "stop"
|
1320 |
}
|
1321 |
]
|
1322 |
+
}
|
1323 |
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
1324 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1325 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
|
|
1326 |
else:
|
1327 |
response.raise_for_status()
|
1328 |
end_time = time.time()
|
1329 |
response_json = response.json()
|
1330 |
total_time = end_time - start_time
|
1331 |
+
|
1332 |
try:
|
1333 |
choices = response_json.get("choices", [])
|
1334 |
if choices and isinstance(choices[0], dict):
|
|
|
1388 |
}
|
1389 |
]
|
1390 |
}
|
1391 |
+
|
1392 |
logging.info(
|
1393 |
+
f"使用的key: {api_key}, "
|
1394 |
+
f"总共用时: {total_time:.4f}秒, "
|
1395 |
+
f"使用的模型: {model_name}"
|
1396 |
)
|
1397 |
+
|
1398 |
with data_lock:
|
1399 |
+
request_timestamps.append(time.time())
|
1400 |
+
token_counts.append(0)
|
1401 |
+
|
1402 |
return jsonify(response_data)
|
|
|
1403 |
except requests.exceptions.RequestException as e:
|
1404 |
+
logging.error(f"请求转发异常: {e}")
|
1405 |
+
return jsonify({"error": str(e)}), 500
|
1406 |
|
1407 |
if __name__ == '__main__':
|
1408 |
import json
|