Spaces:
Running
Running
File size: 9,650 Bytes
c0658b2 cb0bf83 f88a286 0baf87f 69eed4a cb0bf83 e1d21ef cb0bf83 ad93aea 9e68c28 cb0bf83 f88a286 cb0bf83 69eed4a cb0bf83 c0658b2 cb0bf83 f88a286 cb0bf83 c0658b2 cb0bf83 ad93aea 69eed4a ad93aea cb0bf83 69eed4a 9e68c28 0baf87f 69eed4a c0658b2 0baf87f 9e68c28 0baf87f 9e68c28 0baf87f 9e68c28 0baf87f 69eed4a c0658b2 0baf87f c0658b2 0cef40a 69eed4a 9e68c28 79aceed 9e68c28 79aceed 9e68c28 79aceed 0baf87f 79aceed 69eed4a cb0bf83 f88a286 cb0bf83 f88a286 c0658b2 69eed4a c0658b2 f88a286 cb0bf83 f88a286 cb0bf83 f88a286 cb0bf83 69eed4a f88a286 e1d21ef f88a286 e1d21ef 69eed4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# # app.py
# import os
# import logging
# from fastapi import FastAPI, HTTPException
# from fastapi.responses import JSONResponse
# from pydantic import BaseModel
# from huggingface_hub import InferenceClient
# from typing import Optional
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Initialize FastAPI app
# app = FastAPI(
# title="LLM Chat API",
# description="API for getting chat responses from Llama model",
# version="1.0.0"
# )
# class ChatRequest(BaseModel):
# text: str
# class ChatResponse(BaseModel):
# response: str
# status: str
# def llm_chat_response(text: str) -> str:
# try:
# HF_TOKEN = os.getenv("HF_TOKEN")
# logger.info("Checking HF_TOKEN...")
# if not HF_TOKEN:
# logger.error("HF_TOKEN not found in environment variables")
# raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
# logger.info("Initializing InferenceClient...")
# client = InferenceClient(
# provider="sambanova",
# api_key=HF_TOKEN
# )
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + " describe in one line only"
# }
# ]
# }
# ]
# logger.info("Sending request to model...")
# completion = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500
# )
# return completion.choices[0].message['content']
# except Exception as e:
# logger.error(f"Error in llm_chat_response: {str(e)}")
# raise HTTPException(status_code=500, detail=str(e))
# @app.post("/chat", response_model=ChatResponse)
# async def chat(request: ChatRequest):
# try:
# logger.info(f"Received chat request with text: {request.text}")
# response = llm_chat_response(request.text)
# return ChatResponse(response=response, status="success")
# except HTTPException as he:
# logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
# raise he
# except Exception as e:
# logger.error(f"Unexpected error in chat endpoint: {str(e)}")
# raise HTTPException(status_code=500, detail=str(e))
# @app.get("/")
# async def root():
# return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
# @app.exception_handler(404)
# async def not_found_handler(request, exc):
# return JSONResponse(
# status_code=404,
# content={"error": "Endpoint not found. Please use POST /chat for queries."}
# )
# @app.exception_handler(405)
# async def method_not_allowed_handler(request, exc):
# return JSONResponse(
# status_code=405,
# content={"error": "Method not allowed. Please check the API documentation."}
# )
# app.py
import os
import logging
import base64
import requests
from typing import Optional
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from requests.exceptions import HTTPError
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM Chat API",
description="API for getting chat responses from Llama model (supports text and image input)",
version="1.0.0"
)
class ChatRequest(BaseModel):
text: str
image_url: Optional[str] = None
class ChatResponse(BaseModel):
response: str
status: str
def llm_chat_response(text: str, image_url: Optional[str] = None) -> str:
try:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not found in environment variables")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="sambanova",
api_key=HF_TOKEN
)
# Build the messages payload.
# For text-only queries, append a default instruction.
message_content = [{
"type": "text",
"text": text + ("" if image_url else " describe in one line only")
}]
if image_url:
logger.info("Downloading and converting image to base64 data URI...")
# Download the image
image_response = requests.get(image_url)
if image_response.status_code != 200:
logger.error("Failed to download image from URL")
raise HTTPException(status_code=500, detail="Failed to download image from provided URL")
image_bytes = image_response.content
# Get the MIME type from the response headers
mime_type = image_response.headers.get("Content-Type")
if not mime_type or not mime_type.startswith("image/"):
logger.error("Invalid image MIME type")
raise HTTPException(status_code=500, detail="Invalid image MIME type")
# Encode image in base64 and format as a data URI
base64_image = base64.b64encode(image_bytes).decode("utf-8")
data_uri = f"data:{mime_type};base64,{base64_image}"
logger.info(f"Data URI created: {data_uri[:50]}...") # log first 50 chars for verification
message_content.append({
"type": "image_url",
"image_url": {"url": data_uri}
})
messages = [{
"role": "user",
"content": message_content
}]
logger.info("Sending request to model...")
try:
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
except HTTPError as http_err:
# Log HTTP errors from the request
logger.error(f"HTTP error occurred: {http_err.response.text}")
raise HTTPException(status_code=500, detail=http_err.response.text)
logger.info(f"Raw model response: {completion}")
# If the model returned an error field, capture and return that error.
if getattr(completion, "error", None):
error_details = completion.error
error_message = error_details.get("message", "Unknown error")
logger.error(f"Model returned error: {error_message}")
raise HTTPException(status_code=500, detail=f"Model returned error: {error_message}")
if not completion.choices or len(completion.choices) == 0:
logger.error("No choices returned from model.")
raise HTTPException(status_code=500, detail="Model returned no choices.")
# Extract the response message from the first choice.
choice = completion.choices[0]
response_message = None
if hasattr(choice, "message"):
response_message = choice.message
elif isinstance(choice, dict):
response_message = choice.get("message")
if not response_message:
logger.error(f"Response message is empty: {choice}")
raise HTTPException(status_code=500, detail="Model response did not include a message.")
content = None
if isinstance(response_message, dict):
content = response_message.get("content")
if content is None and hasattr(response_message, "content"):
content = response_message.content
if not content:
logger.error(f"Message content is missing: {response_message}")
raise HTTPException(status_code=500, detail="Model message did not include content.")
return content
except Exception as e:
logger.error(f"Error in llm_chat_response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
try:
logger.info(f"Received chat request with text: {request.text}")
if request.image_url:
logger.info(f"Image URL provided: {request.image_url}")
response = llm_chat_response(request.text, request.image_url)
return ChatResponse(response=response, status="success")
except HTTPException as he:
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
raise he
except Exception as e:
logger.error(f"Unexpected error in chat endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint with 'text' and optionally 'image_url' for queries."}
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={"error": "Endpoint not found. Please use POST /chat for queries."}
)
@app.exception_handler(405)
async def method_not_allowed_handler(request, exc):
return JSONResponse(
status_code=405,
content={"error": "Method not allowed. Please check the API documentation."}
)
|