Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
import os
|
3 |
import logging
|
@@ -14,43 +112,57 @@ logger = logging.getLogger(__name__)
|
|
14 |
# Initialize FastAPI app
|
15 |
app = FastAPI(
|
16 |
title="LLM Chat API",
|
17 |
-
description="API for getting chat responses from Llama model",
|
18 |
-
version="1.
|
19 |
)
|
20 |
|
21 |
class ChatRequest(BaseModel):
|
22 |
text: str
|
|
|
23 |
|
24 |
class ChatResponse(BaseModel):
|
25 |
response: str
|
26 |
status: str
|
27 |
|
28 |
-
def llm_chat_response(text: str) -> str:
|
29 |
try:
|
30 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
logger.info("Checking HF_TOKEN...")
|
32 |
if not HF_TOKEN:
|
33 |
logger.error("HF_TOKEN not found in environment variables")
|
34 |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
35 |
-
|
36 |
logger.info("Initializing InferenceClient...")
|
37 |
client = InferenceClient(
|
38 |
provider="sambanova",
|
39 |
api_key=HF_TOKEN
|
40 |
)
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
messages = [
|
43 |
{
|
44 |
"role": "user",
|
45 |
-
"content":
|
46 |
-
{
|
47 |
-
"type": "text",
|
48 |
-
"text": text + " describe in one line only"
|
49 |
-
}
|
50 |
-
]
|
51 |
}
|
52 |
]
|
53 |
-
|
54 |
logger.info("Sending request to model...")
|
55 |
completion = client.chat.completions.create(
|
56 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
@@ -58,7 +170,6 @@ def llm_chat_response(text: str) -> str:
|
|
58 |
max_tokens=500
|
59 |
)
|
60 |
return completion.choices[0].message['content']
|
61 |
-
|
62 |
except Exception as e:
|
63 |
logger.error(f"Error in llm_chat_response: {str(e)}")
|
64 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -67,7 +178,10 @@ def llm_chat_response(text: str) -> str:
|
|
67 |
async def chat(request: ChatRequest):
|
68 |
try:
|
69 |
logger.info(f"Received chat request with text: {request.text}")
|
70 |
-
|
|
|
|
|
|
|
71 |
return ChatResponse(response=response, status="success")
|
72 |
except HTTPException as he:
|
73 |
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
|
@@ -78,7 +192,7 @@ async def chat(request: ChatRequest):
|
|
78 |
|
79 |
@app.get("/")
|
80 |
async def root():
|
81 |
-
return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
|
82 |
|
83 |
@app.exception_handler(404)
|
84 |
async def not_found_handler(request, exc):
|
|
|
1 |
+
# # app.py
|
2 |
+
# import os
|
3 |
+
# import logging
|
4 |
+
# from fastapi import FastAPI, HTTPException
|
5 |
+
# from fastapi.responses import JSONResponse
|
6 |
+
# from pydantic import BaseModel
|
7 |
+
# from huggingface_hub import InferenceClient
|
8 |
+
# from typing import Optional
|
9 |
+
|
10 |
+
# # Set up logging
|
11 |
+
# logging.basicConfig(level=logging.INFO)
|
12 |
+
# logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
# # Initialize FastAPI app
|
15 |
+
# app = FastAPI(
|
16 |
+
# title="LLM Chat API",
|
17 |
+
# description="API for getting chat responses from Llama model",
|
18 |
+
# version="1.0.0"
|
19 |
+
# )
|
20 |
+
|
21 |
+
# class ChatRequest(BaseModel):
|
22 |
+
# text: str
|
23 |
+
|
24 |
+
# class ChatResponse(BaseModel):
|
25 |
+
# response: str
|
26 |
+
# status: str
|
27 |
+
|
28 |
+
# def llm_chat_response(text: str) -> str:
|
29 |
+
# try:
|
30 |
+
# HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
+
# logger.info("Checking HF_TOKEN...")
|
32 |
+
# if not HF_TOKEN:
|
33 |
+
# logger.error("HF_TOKEN not found in environment variables")
|
34 |
+
# raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
35 |
+
|
36 |
+
# logger.info("Initializing InferenceClient...")
|
37 |
+
# client = InferenceClient(
|
38 |
+
# provider="sambanova",
|
39 |
+
# api_key=HF_TOKEN
|
40 |
+
# )
|
41 |
+
|
42 |
+
# messages = [
|
43 |
+
# {
|
44 |
+
# "role": "user",
|
45 |
+
# "content": [
|
46 |
+
# {
|
47 |
+
# "type": "text",
|
48 |
+
# "text": text + " describe in one line only"
|
49 |
+
# }
|
50 |
+
# ]
|
51 |
+
# }
|
52 |
+
# ]
|
53 |
+
|
54 |
+
# logger.info("Sending request to model...")
|
55 |
+
# completion = client.chat.completions.create(
|
56 |
+
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
57 |
+
# messages=messages,
|
58 |
+
# max_tokens=500
|
59 |
+
# )
|
60 |
+
# return completion.choices[0].message['content']
|
61 |
+
|
62 |
+
# except Exception as e:
|
63 |
+
# logger.error(f"Error in llm_chat_response: {str(e)}")
|
64 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
65 |
+
|
66 |
+
# @app.post("/chat", response_model=ChatResponse)
|
67 |
+
# async def chat(request: ChatRequest):
|
68 |
+
# try:
|
69 |
+
# logger.info(f"Received chat request with text: {request.text}")
|
70 |
+
# response = llm_chat_response(request.text)
|
71 |
+
# return ChatResponse(response=response, status="success")
|
72 |
+
# except HTTPException as he:
|
73 |
+
# logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
|
74 |
+
# raise he
|
75 |
+
# except Exception as e:
|
76 |
+
# logger.error(f"Unexpected error in chat endpoint: {str(e)}")
|
77 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
78 |
+
|
79 |
+
# @app.get("/")
|
80 |
+
# async def root():
|
81 |
+
# return {"message": "Welcome to the LLM Chat API. Use POST /chat endpoint to get responses."}
|
82 |
+
|
83 |
+
# @app.exception_handler(404)
|
84 |
+
# async def not_found_handler(request, exc):
|
85 |
+
# return JSONResponse(
|
86 |
+
# status_code=404,
|
87 |
+
# content={"error": "Endpoint not found. Please use POST /chat for queries."}
|
88 |
+
# )
|
89 |
+
|
90 |
+
# @app.exception_handler(405)
|
91 |
+
# async def method_not_allowed_handler(request, exc):
|
92 |
+
# return JSONResponse(
|
93 |
+
# status_code=405,
|
94 |
+
# content={"error": "Method not allowed. Please check the API documentation."}
|
95 |
+
# )
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
# app.py
|
100 |
import os
|
101 |
import logging
|
|
|
112 |
# Initialize FastAPI app
|
113 |
app = FastAPI(
|
114 |
title="LLM Chat API",
|
115 |
+
description="API for getting chat responses from Llama model with image support",
|
116 |
+
version="1.1.0"
|
117 |
)
|
118 |
|
119 |
class ChatRequest(BaseModel):
|
120 |
text: str
|
121 |
+
image_url: Optional[str] = None
|
122 |
|
123 |
class ChatResponse(BaseModel):
|
124 |
response: str
|
125 |
status: str
|
126 |
|
127 |
+
def llm_chat_response(text: str, image_url: Optional[str] = None) -> str:
|
128 |
try:
|
129 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
130 |
logger.info("Checking HF_TOKEN...")
|
131 |
if not HF_TOKEN:
|
132 |
logger.error("HF_TOKEN not found in environment variables")
|
133 |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
|
134 |
+
|
135 |
logger.info("Initializing InferenceClient...")
|
136 |
client = InferenceClient(
|
137 |
provider="sambanova",
|
138 |
api_key=HF_TOKEN
|
139 |
)
|
140 |
+
|
141 |
+
# Prepare content list for the message
|
142 |
+
content = [
|
143 |
+
{
|
144 |
+
"type": "text",
|
145 |
+
"text": text + " describe in one line only"
|
146 |
+
}
|
147 |
+
]
|
148 |
+
|
149 |
+
# Add image to content if provided
|
150 |
+
if image_url:
|
151 |
+
logger.info(f"Adding image URL to request: {image_url}")
|
152 |
+
content.append({
|
153 |
+
"type": "image_url",
|
154 |
+
"image_url": {
|
155 |
+
"url": image_url
|
156 |
+
}
|
157 |
+
})
|
158 |
+
|
159 |
messages = [
|
160 |
{
|
161 |
"role": "user",
|
162 |
+
"content": content
|
|
|
|
|
|
|
|
|
|
|
163 |
}
|
164 |
]
|
165 |
+
|
166 |
logger.info("Sending request to model...")
|
167 |
completion = client.chat.completions.create(
|
168 |
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
|
|
170 |
max_tokens=500
|
171 |
)
|
172 |
return completion.choices[0].message['content']
|
|
|
173 |
except Exception as e:
|
174 |
logger.error(f"Error in llm_chat_response: {str(e)}")
|
175 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
178 |
async def chat(request: ChatRequest):
|
179 |
try:
|
180 |
logger.info(f"Received chat request with text: {request.text}")
|
181 |
+
if request.image_url:
|
182 |
+
logger.info(f"Image URL included: {request.image_url}")
|
183 |
+
|
184 |
+
response = llm_chat_response(request.text, request.image_url)
|
185 |
return ChatResponse(response=response, status="success")
|
186 |
except HTTPException as he:
|
187 |
logger.error(f"HTTP Exception in chat endpoint: {str(he)}")
|
|
|
192 |
|
193 |
@app.get("/")
|
194 |
async def root():
|
195 |
+
return {"message": "Welcome to the LLM Chat API with image support. Use POST /chat endpoint to get responses."}
|
196 |
|
197 |
@app.exception_handler(404)
|
198 |
async def not_found_handler(request, exc):
|