LLaDA / app.py
multimodalart's picture
Update app.py
c6a828d verified
import torch
import numpy as np
import gradio as gr
import spaces
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
import time
import re
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device)
# Constants
MASK_TOKEN = "[MASK]"
MASK_ID = 126336 # The token ID of [MASK] in LLaDA
def parse_constraints(constraints_text):
"""Parse constraints in format: 'position:word, position:word, ...'"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
if ':' not in part:
continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip()
if word and pos >= 0:
constraints[pos] = word
except ValueError:
continue
return constraints
def format_chat_history(history):
"""
Format chat history for the LLaDA model
Args:
history: List of [user_message, assistant_message] pairs
Returns:
Formatted conversation for the model
"""
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg: # Skip if None (for the latest user message)
messages.append({"role": "assistant", "content": assistant_msg})
return messages
def add_gumbel_noise(logits, temperature):
'''
The Gumbel max is a method for sampling categorical distributions.
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
Thus, we use float64.
'''
if temperature <= 0:
return logits
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
'''
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
the expected number of tokens transitioned at each step should be consistent.
This function is designed to precompute the number of tokens that need to be transitioned at each step.
'''
mask_num = mask_index.sum(dim=1, keepdim=True)
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
@spaces.GPU
def generate_response_with_visualization(messages, gen_length=64, steps=32,
constraints=None, temperature=0.0, cfg_scale=0.0, block_length=32,
remasking='low_confidence'):
"""
Generate text with LLaDA model with visualization using the same sampling as in generate.py
Args:
messages: List of message dictionaries with 'role' and 'content'
gen_length: Length of text to generate
steps: Number of denoising steps
constraints: Dictionary mapping positions to words
temperature: Sampling temperature
cfg_scale: Classifier-free guidance scale
block_length: Block length for semi-autoregressive generation
remasking: Remasking strategy ('low_confidence' or 'random')
Returns:
List of visualization states showing the progression and final text
"""
# Process constraints
if constraints is None:
constraints = {}
# Convert any string constraints to token IDs
processed_constraints = {}
for pos, word in constraints.items():
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
for i, token_id in enumerate(tokens):
processed_constraints[pos + i] = token_id
# Prepare the prompt using chat template
chat_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(chat_input)['input_ids']
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
# For generation
prompt_length = input_ids.shape[1]
# Initialize the sequence with masks for the response part
x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
x[:, :prompt_length] = input_ids.clone()
# Initialize visualization states for the response part
visualization_states = []
# Add initial state (all masked)
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
visualization_states.append(initial_state)
# Apply constraints to the initial state
for pos, token_id in processed_constraints.items():
absolute_pos = prompt_length + pos
if absolute_pos < x.shape[1]:
x[:, absolute_pos] = token_id
# Mark prompt positions to exclude them from masking during classifier-free guidance
prompt_index = (x != MASK_ID)
# Ensure block_length is valid
if block_length > gen_length:
block_length = gen_length
# Calculate number of blocks
num_blocks = gen_length // block_length
if gen_length % block_length != 0:
num_blocks += 1
# Adjust steps per block
steps_per_block = steps // num_blocks
if steps_per_block < 1:
steps_per_block = 1
# Track the current state of x for visualization
current_x = x.clone()
# Process each block
for num_block in range(num_blocks):
# Calculate the start and end indices for the current block
block_start = prompt_length + num_block * block_length
block_end = min(prompt_length + (num_block + 1) * block_length, x.shape[1])
# Get mask indices for the current block
block_mask_index = (x[:, block_start:block_end] == MASK_ID)
# Skip if no masks in this block
if not block_mask_index.any():
continue
# Calculate number of tokens to unmask at each step
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps_per_block)
# Process each step
for i in range(steps_per_block):
# Get all mask positions in the current sequence
mask_index = (x == MASK_ID)
# Skip if no masks
if not mask_index.any():
break
# Apply classifier-free guidance if enabled
if cfg_scale > 0.0:
un_x = x.clone()
un_x[prompt_index] = MASK_ID
x_ = torch.cat([x, un_x], dim=0)
logits = model(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = model(x).logits
# Apply Gumbel noise for sampling
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1)
# Calculate confidence scores for remasking
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(f"Remasking strategy '{remasking}' not implemented")
# Don't consider positions beyond the current block
x0_p[:, block_end:] = -float('inf')
# Apply predictions where we have masks
old_x = x.clone()
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -float('inf'))
# Select tokens to unmask based on confidence
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
# Only consider positions within the current block for unmasking
block_confidence = confidence[j, block_start:block_end]
if i < steps_per_block - 1: # Not the last step
# Take top-k confidences
_, select_indices = torch.topk(block_confidence,
k=min(num_transfer_tokens[j, i].item(),
block_confidence.numel()))
# Adjust indices to global positions
select_indices = select_indices + block_start
transfer_index[j, select_indices] = True
else: # Last step - unmask everything remaining
transfer_index[j, block_start:block_end] = mask_index[j, block_start:block_end]
# Apply the selected tokens
x = torch.where(transfer_index, x0, x)
# Ensure constraints are maintained
for pos, token_id in processed_constraints.items():
absolute_pos = prompt_length + pos
if absolute_pos < x.shape[1]:
x[:, absolute_pos] = token_id
# Create visualization state only for the response part
current_state = []
for i in range(gen_length):
pos = prompt_length + i # Absolute position in the sequence
if x[0, pos] == MASK_ID:
# Still masked
current_state.append((MASK_TOKEN, "#444444")) # Dark gray for masks
elif old_x[0, pos] == MASK_ID:
# Newly revealed in this step
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
# Color based on confidence
confidence = float(x0_p[0, pos].cpu())
if confidence < 0.3:
color = "#FF6666" # Light red
elif confidence < 0.7:
color = "#FFAA33" # Orange
else:
color = "#66CC66" # Light green
current_state.append((token, color))
else:
# Previously revealed
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
current_state.append((token, "#6699CC")) # Light blue
visualization_states.append(current_state)
# Extract final text (just the assistant's response)
response_tokens = x[0, prompt_length:]
final_text = tokenizer.decode(response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
return visualization_states, final_text
css = '''
.category-legend{display:none}
button{height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown("# LLaDA - Large Language Diffusion Model Demo")
gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
# STATE MANAGEMENT
chat_history = gr.State([])
# UI COMPONENTS
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(label="Conversation", height=500)
# Message input
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
show_label=False
)
send_btn = gr.Button("Send")
constraints_input = gr.Textbox(
label="Word Constraints",
info="This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time', would be: '0:Once, 5:upon, 10:time",
placeholder="0:Once, 5:upon, 10:time",
value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=False,
show_legend=True,
)
# Advanced generation settings
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(
minimum=16, maximum=128, value=64, step=8,
label="Generation Length"
)
steps = gr.Slider(
minimum=8, maximum=64, value=64, step=4,
label="Denoising Steps"
)
with gr.Row():
temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.1,
label="Temperature"
)
cfg_scale = gr.Slider(
minimum=0.0, maximum=2.0, value=0.0, step=0.1,
label="CFG Scale"
)
with gr.Row():
block_length = gr.Slider(
minimum=8, maximum=128, value=32, step=8,
label="Block Length"
)
remasking_strategy = gr.Radio(
choices=["low_confidence", "random"],
value="low_confidence",
label="Remasking Strategy"
)
with gr.Row():
visualization_delay = gr.Slider(
minimum=0.0, maximum=1.0, value=0.05, step=0.01,
label="Visualization Delay (seconds)"
)
# Current response text box (hidden)
current_response = gr.Textbox(
label="Current Response",
placeholder="The assistant's response will appear here...",
lines=3,
visible=False
)
# Clear button
clear_btn = gr.Button("Clear Conversation")
# HELPER FUNCTIONS
def add_message(history, message, response):
"""Add a message pair to the history and return the updated history"""
history = history.copy()
history.append([message, response])
return history
def user_message_submitted(message, history, gen_length, steps, constraints, delay):
"""Process a submitted user message"""
# Skip empty messages
if not message.strip():
# Return current state unchanged
history_for_display = history.copy()
return history, history_for_display, "", [], ""
# Add user message to history
history = add_message(history, message, None)
# Format for display - temporarily show user message with empty response
history_for_display = history.copy()
# Clear the input
message_out = ""
# Return immediately to update UI with user message
return history, history_for_display, message_out, [], ""
def bot_response(history, gen_length, steps, constraints, delay, temperature, cfg_scale, block_length, remasking):
"""Generate bot response for the latest message"""
if not history:
return history, [], ""
# Get the last user message
last_user_message = history[-1][0]
try:
# Format all messages except the last one (which has no response yet)
messages = format_chat_history(history[:-1])
# Add the last user message
messages.append({"role": "user", "content": last_user_message})
# Parse constraints
parsed_constraints = parse_constraints(constraints)
# Generate response with visualization
vis_states, response_text = generate_response_with_visualization(
messages,
gen_length=gen_length,
steps=steps,
constraints=parsed_constraints,
temperature=temperature,
cfg_scale=cfg_scale,
block_length=block_length,
remasking=remasking
)
# Update history with the assistant's response
history[-1][1] = response_text
# Return the initial state immediately
yield history, vis_states[0], response_text
# Then animate through visualization states
for state in vis_states[1:]:
time.sleep(delay)
yield history, state, response_text
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
# Show error in visualization
error_vis = [(error_msg, "red")]
# Don't update history with error
yield history, error_vis, error_msg
def clear_conversation():
"""Clear the conversation history"""
return [], [], "", []
# EVENT HANDLERS
# Clear button handler
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[chat_history, chatbot_ui, current_response, output_vis]
)
# User message submission flow (2-step process)
# Step 1: Add user message to history and update UI
msg_submit = user_input.submit(
fn=user_message_submitted,
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
)
# Also connect the send button
send_click = send_btn.click(
fn=user_message_submitted,
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
)
# Step 2: Generate bot response
# This happens after the user message is displayed
msg_submit.then(
fn=bot_response,
inputs=[
chat_history, gen_length, steps, constraints_input,
visualization_delay, temperature, cfg_scale, block_length,
remasking_strategy
],
outputs=[chatbot_ui, output_vis, current_response]
)
send_click.then(
fn=bot_response,
inputs=[
chat_history, gen_length, steps, constraints_input,
visualization_delay, temperature, cfg_scale, block_length,
remasking_strategy
],
outputs=[chatbot_ui, output_vis, current_response]
)
return demo
# Launch the demo
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(share=True)