File size: 20,524 Bytes
b41aa9b
 
 
 
ef6b1de
b41aa9b
 
 
 
 
 
 
 
 
 
6aefb86
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa9b
c6a828d
ef6b1de
 
b41aa9b
ef6b1de
b41aa9b
 
 
ef6b1de
 
 
 
 
 
 
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
b41aa9b
 
ef6b1de
b41aa9b
 
 
 
 
 
 
 
 
ef6b1de
 
b41aa9b
ef6b1de
 
 
b41aa9b
ef6b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa9b
ef6b1de
 
b41aa9b
ef6b1de
 
 
b41aa9b
ef6b1de
 
b41aa9b
ef6b1de
 
 
 
b41aa9b
ef6b1de
 
 
b41aa9b
ef6b1de
 
 
 
 
 
 
 
 
 
b41aa9b
ef6b1de
 
 
b41aa9b
ef6b1de
 
 
 
 
 
 
 
 
b41aa9b
ef6b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa9b
ef6b1de
 
 
b41aa9b
ef6b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b41aa9b
 
 
24f06df
ef6b1de
 
b41aa9b
 
 
 
 
691f73d
b41aa9b
 
 
ef6b1de
b41aa9b
 
ef6b1de
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
 
b41aa9b
 
 
 
 
 
 
f6bde08
b41aa9b
 
ef6b1de
 
f6bde08
ef6b1de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6bde08
ef6b1de
 
b41aa9b
ef6b1de
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
 
 
 
 
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6b1de
 
 
 
 
b41aa9b
 
 
 
 
ef6b1de
 
 
 
 
b41aa9b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import torch
import numpy as np
import gradio as gr
import spaces
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
import time
import re

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True, 
                                  torch_dtype=torch.bfloat16).to(device)

# Constants
MASK_TOKEN = "[MASK]"
MASK_ID = 126336  # The token ID of [MASK] in LLaDA

def parse_constraints(constraints_text):
    """Parse constraints in format: 'position:word, position:word, ...'"""
    constraints = {}
    if not constraints_text:
        return constraints
        
    parts = constraints_text.split(',')
    for part in parts:
        if ':' not in part:
            continue
        pos_str, word = part.split(':', 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip()
            if word and pos >= 0:
                constraints[pos] = word
        except ValueError:
            continue
    
    return constraints

def format_chat_history(history):
    """
    Format chat history for the LLaDA model
    
    Args:
        history: List of [user_message, assistant_message] pairs
        
    Returns:
        Formatted conversation for the model
    """
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:  # Skip if None (for the latest user message)
            messages.append({"role": "assistant", "content": assistant_msg})
    
    return messages

def add_gumbel_noise(logits, temperature):
    '''
    The Gumbel max is a method for sampling categorical distributions.
    According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
    Thus, we use float64.
    '''
    if temperature <= 0:
        return logits
        
    logits = logits.to(torch.float64)
    noise = torch.rand_like(logits, dtype=torch.float64)
    gumbel_noise = (- torch.log(noise)) ** temperature
    return logits.exp() / gumbel_noise

def get_num_transfer_tokens(mask_index, steps):
    '''
    In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
    Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
    the expected number of tokens transitioned at each step should be consistent.

    This function is designed to precompute the number of tokens that need to be transitioned at each step.
    '''
    mask_num = mask_index.sum(dim=1, keepdim=True)

    base = mask_num // steps
    remainder = mask_num % steps

    num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base

    for i in range(mask_num.size(0)):
        num_transfer_tokens[i, :remainder[i]] += 1

    return num_transfer_tokens

@spaces.GPU
def generate_response_with_visualization(messages, gen_length=64, steps=32, 
                                         constraints=None, temperature=0.0, cfg_scale=0.0, block_length=32,
                                         remasking='low_confidence'):
    """
    Generate text with LLaDA model with visualization using the same sampling as in generate.py
    
    Args:
        messages: List of message dictionaries with 'role' and 'content'
        gen_length: Length of text to generate
        steps: Number of denoising steps
        constraints: Dictionary mapping positions to words
        temperature: Sampling temperature
        cfg_scale: Classifier-free guidance scale
        block_length: Block length for semi-autoregressive generation
        remasking: Remasking strategy ('low_confidence' or 'random')
        
    Returns:
        List of visualization states showing the progression and final text
    """
    
    # Process constraints
    if constraints is None:
        constraints = {}
        
    # Convert any string constraints to token IDs
    processed_constraints = {}
    for pos, word in constraints.items():
        tokens = tokenizer.encode(" " + word, add_special_tokens=False)
        for i, token_id in enumerate(tokens):
            processed_constraints[pos + i] = token_id
    
    # Prepare the prompt using chat template
    chat_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    input_ids = tokenizer(chat_input)['input_ids']
    input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
    
    # For generation
    prompt_length = input_ids.shape[1]
    
    # Initialize the sequence with masks for the response part
    x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
    x[:, :prompt_length] = input_ids.clone()
    
    # Initialize visualization states for the response part
    visualization_states = []
    
    # Add initial state (all masked)
    initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
    visualization_states.append(initial_state)
    
    # Apply constraints to the initial state
    for pos, token_id in processed_constraints.items():
        absolute_pos = prompt_length + pos
        if absolute_pos < x.shape[1]:
            x[:, absolute_pos] = token_id
    
    # Mark prompt positions to exclude them from masking during classifier-free guidance
    prompt_index = (x != MASK_ID)
    
    # Ensure block_length is valid
    if block_length > gen_length:
        block_length = gen_length
    
    # Calculate number of blocks
    num_blocks = gen_length // block_length
    if gen_length % block_length != 0:
        num_blocks += 1
    
    # Adjust steps per block
    steps_per_block = steps // num_blocks
    if steps_per_block < 1:
        steps_per_block = 1
    
    # Track the current state of x for visualization
    current_x = x.clone()

    # Process each block
    for num_block in range(num_blocks):
        # Calculate the start and end indices for the current block
        block_start = prompt_length + num_block * block_length
        block_end = min(prompt_length + (num_block + 1) * block_length, x.shape[1])
        
        # Get mask indices for the current block
        block_mask_index = (x[:, block_start:block_end] == MASK_ID)
        
        # Skip if no masks in this block
        if not block_mask_index.any():
            continue
        
        # Calculate number of tokens to unmask at each step
        num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps_per_block)
        
        # Process each step
        for i in range(steps_per_block):
            # Get all mask positions in the current sequence
            mask_index = (x == MASK_ID)
            
            # Skip if no masks
            if not mask_index.any():
                break
            
            # Apply classifier-free guidance if enabled
            if cfg_scale > 0.0:
                un_x = x.clone()
                un_x[prompt_index] = MASK_ID
                x_ = torch.cat([x, un_x], dim=0)
                logits = model(x_).logits
                logits, un_logits = torch.chunk(logits, 2, dim=0)
                logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
            else:
                logits = model(x).logits
            
            # Apply Gumbel noise for sampling
            logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
            x0 = torch.argmax(logits_with_noise, dim=-1)
            
            # Calculate confidence scores for remasking
            if remasking == 'low_confidence':
                p = F.softmax(logits.to(torch.float64), dim=-1)
                x0_p = torch.squeeze(
                    torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1)  # b, l
            elif remasking == 'random':
                x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
            else:
                raise NotImplementedError(f"Remasking strategy '{remasking}' not implemented")
            
            # Don't consider positions beyond the current block
            x0_p[:, block_end:] = -float('inf')
            
            # Apply predictions where we have masks
            old_x = x.clone()
            x0 = torch.where(mask_index, x0, x)
            confidence = torch.where(mask_index, x0_p, -float('inf'))
            
            # Select tokens to unmask based on confidence
            transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
            for j in range(confidence.shape[0]):
                # Only consider positions within the current block for unmasking
                block_confidence = confidence[j, block_start:block_end]
                if i < steps_per_block - 1:  # Not the last step
                    # Take top-k confidences
                    _, select_indices = torch.topk(block_confidence, 
                                                  k=min(num_transfer_tokens[j, i].item(), 
                                                       block_confidence.numel()))
                    # Adjust indices to global positions
                    select_indices = select_indices + block_start
                    transfer_index[j, select_indices] = True
                else:  # Last step - unmask everything remaining
                    transfer_index[j, block_start:block_end] = mask_index[j, block_start:block_end]
            
            # Apply the selected tokens
            x = torch.where(transfer_index, x0, x)
            
            # Ensure constraints are maintained
            for pos, token_id in processed_constraints.items():
                absolute_pos = prompt_length + pos
                if absolute_pos < x.shape[1]:
                    x[:, absolute_pos] = token_id
            
            # Create visualization state only for the response part
            current_state = []
            for i in range(gen_length):
                pos = prompt_length + i  # Absolute position in the sequence
                
                if x[0, pos] == MASK_ID:
                    # Still masked
                    current_state.append((MASK_TOKEN, "#444444"))  # Dark gray for masks
                    
                elif old_x[0, pos] == MASK_ID:
                    # Newly revealed in this step
                    token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
                    # Color based on confidence
                    confidence = float(x0_p[0, pos].cpu())
                    if confidence < 0.3:
                        color = "#FF6666"  # Light red
                    elif confidence < 0.7:
                        color = "#FFAA33"  # Orange
                    else:
                        color = "#66CC66"  # Light green
                        
                    current_state.append((token, color))
                    
                else:
                    # Previously revealed
                    token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
                    current_state.append((token, "#6699CC"))  # Light blue
            
            visualization_states.append(current_state)
    
    # Extract final text (just the assistant's response)
    response_tokens = x[0, prompt_length:]
    final_text = tokenizer.decode(response_tokens, 
                               skip_special_tokens=True,
                               clean_up_tokenization_spaces=True)
    
    return visualization_states, final_text

css = '''
.category-legend{display:none}
button{height: 60px}
'''
def create_chatbot_demo():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("# LLaDA - Large Language Diffusion Model Demo")
        gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
        
        # STATE MANAGEMENT
        chat_history = gr.State([])
        
        # UI COMPONENTS
        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(label="Conversation", height=500)
                
                # Message input
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message", 
                            placeholder="Type your message here...",
                            show_label=False
                        )
                        send_btn = gr.Button("Send")
                
                constraints_input = gr.Textbox(
                    label="Word Constraints", 
                    info="This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time', would be: '0:Once, 5:upon, 10:time",
                    placeholder="0:Once, 5:upon, 10:time",
                    value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=False,
                    show_legend=True,
                )
        
        # Advanced generation settings
        with gr.Accordion("Generation Settings", open=False):
            with gr.Row():
                gen_length = gr.Slider(
                    minimum=16, maximum=128, value=64, step=8,
                    label="Generation Length"
                )
                steps = gr.Slider(
                    minimum=8, maximum=64, value=64, step=4,
                    label="Denoising Steps"
                )
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.5, step=0.1,
                    label="Temperature"
                )
                cfg_scale = gr.Slider(
                    minimum=0.0, maximum=2.0, value=0.0, step=0.1,
                    label="CFG Scale"
                )
            with gr.Row():
                block_length = gr.Slider(
                    minimum=8, maximum=128, value=32, step=8,
                    label="Block Length"
                )
                remasking_strategy = gr.Radio(
                    choices=["low_confidence", "random"],
                    value="low_confidence",
                    label="Remasking Strategy"
                )
            with gr.Row():
                visualization_delay = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.05, step=0.01,
                    label="Visualization Delay (seconds)"
                )
        
        # Current response text box (hidden)
        current_response = gr.Textbox(
            label="Current Response",
            placeholder="The assistant's response will appear here...",
            lines=3,
            visible=False
        )
        
        # Clear button
        clear_btn = gr.Button("Clear Conversation")
        
        # HELPER FUNCTIONS
        def add_message(history, message, response):
            """Add a message pair to the history and return the updated history"""
            history = history.copy()
            history.append([message, response])
            return history
            
        def user_message_submitted(message, history, gen_length, steps, constraints, delay):
            """Process a submitted user message"""
            # Skip empty messages
            if not message.strip():
                # Return current state unchanged
                history_for_display = history.copy()
                return history, history_for_display, "", [], ""
                
            # Add user message to history
            history = add_message(history, message, None)
            
            # Format for display - temporarily show user message with empty response
            history_for_display = history.copy()
            
            # Clear the input
            message_out = ""
            
            # Return immediately to update UI with user message
            return history, history_for_display, message_out, [], ""
            
        def bot_response(history, gen_length, steps, constraints, delay, temperature, cfg_scale, block_length, remasking):
            """Generate bot response for the latest message"""
            if not history:
                return history, [], ""
                
            # Get the last user message
            last_user_message = history[-1][0]
            
            try:
                # Format all messages except the last one (which has no response yet)
                messages = format_chat_history(history[:-1])
                
                # Add the last user message
                messages.append({"role": "user", "content": last_user_message})
                
                # Parse constraints
                parsed_constraints = parse_constraints(constraints)
                
                # Generate response with visualization
                vis_states, response_text = generate_response_with_visualization(
                    messages, 
                    gen_length=gen_length, 
                    steps=steps,
                    constraints=parsed_constraints,
                    temperature=temperature,
                    cfg_scale=cfg_scale,
                    block_length=block_length,
                    remasking=remasking
                )
                
                # Update history with the assistant's response
                history[-1][1] = response_text
                
                # Return the initial state immediately
                yield history, vis_states[0], response_text
                
                # Then animate through visualization states
                for state in vis_states[1:]:
                    time.sleep(delay)
                    yield history, state, response_text
                    
            except Exception as e:
                error_msg = f"Error: {str(e)}"
                print(error_msg)
                
                # Show error in visualization
                error_vis = [(error_msg, "red")]
                
                # Don't update history with error
                yield history, error_vis, error_msg
        
        def clear_conversation():
            """Clear the conversation history"""
            return [], [], "", []
        
        # EVENT HANDLERS
        
        # Clear button handler
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[chat_history, chatbot_ui, current_response, output_vis]
        )
        
        # User message submission flow (2-step process)
        # Step 1: Add user message to history and update UI
        msg_submit = user_input.submit(
            fn=user_message_submitted,
            inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
        )
        
        # Also connect the send button
        send_click = send_btn.click(
            fn=user_message_submitted,
            inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
        )
        
        # Step 2: Generate bot response
        # This happens after the user message is displayed
        msg_submit.then(
            fn=bot_response,
            inputs=[
                chat_history, gen_length, steps, constraints_input, 
                visualization_delay, temperature, cfg_scale, block_length,
                remasking_strategy
            ],
            outputs=[chatbot_ui, output_vis, current_response]
        )
        
        send_click.then(
            fn=bot_response,
            inputs=[
                chat_history, gen_length, steps, constraints_input, 
                visualization_delay, temperature, cfg_scale, block_length,
                remasking_strategy
            ],
            outputs=[chatbot_ui, output_vis, current_response]
        )
        
    return demo

# Launch the demo
if __name__ == "__main__":
    demo = create_chatbot_demo()
    demo.queue().launch(share=True)