Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import matplotlib.pyplot as plt | |
from pandas.core.common import flatten | |
import torch | |
from torch import nn | |
from torch import optim | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import datasets, transforms, models | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
from tqdm import tqdm | |
import random | |
sys.path.append('/workspace') | |
import dataset | |
train_transforms = A.Compose( | |
[ | |
A.SmallestMaxSize(max_size=350), | |
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5), | |
A.RandomCrop(height=256, width=256), | |
A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5), | |
A.RandomBrightnessContrast(p=0.5), | |
A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2), | |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), | |
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), | |
ToTensorV2(), | |
] | |
) | |
test_transforms = A.Compose( | |
[ | |
A.SmallestMaxSize(max_size=350), | |
A.CenterCrop(height=256, width=256), | |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
ToTensorV2(), | |
] | |
) | |
dataset_CV = dataset.MotorbikeDataset_CV( | |
root='/workspace/data/', | |
train_transforms=train_transforms, | |
val_transforms=test_transforms | |
) | |
train_dataset, val_dataset = dataset_CV.get_split() | |
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True) | |
val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False) | |
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu") | |
model = models.resnet50(pretrained=True) | |
model.fc = nn.Sequential( | |
nn.Dropout(0.5), | |
nn.Linear(model.fc.in_features, 2) | |
) | |
for n, p in model.named_parameters(): | |
if 'fc' in n: | |
p.requires_grad = True | |
else: | |
p.requires_grad = False | |
model.to(device) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) | |
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5) | |
best_acc = 0.0 | |
for epoch in range(10): | |
model.train() | |
running_loss = 0.0 | |
for i, data in enumerate(train_loader, 0): | |
inputs, labels = data[0].to(device), data[1].to(device) | |
optimizer.zero_grad() | |
outputs = model(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
scheduler.step() | |
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') | |
# print("TRAIN acc = {}".format(acc)) | |
running_loss = 0.0 | |
with torch.no_grad(): | |
model.eval() | |
running_loss = 0.0 | |
correct =0 | |
for i, data in enumerate(val_loader, 0): | |
inputs, labels = data[0].to(device), data[1].to(device) | |
outputs = model(inputs) | |
_, preds = outputs.max(1) | |
loss = criterion(outputs, labels) | |
running_loss += loss.item() | |
labels_one_hot = F.one_hot(labels, 2) | |
outputs_one_hot = F.one_hot(preds, 2) | |
correct = correct + (labels_one_hot + outputs_one_hot == 2).sum().to(torch.float) | |
acc = 100 * correct / len(val_dataset) | |
print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / len(val_loader):.3f}') | |
print("VAL acc = {:.2f}".format(acc)) | |
if best_acc < acc: | |
torch.save(model.state_dict(), './result/best_model.pth') |