Spaces:
Runtime error
Runtime error
Commit
·
25322fb
0
Parent(s):
init
Browse files- .gitattributes +34 -0
- .gitignore +5 -0
- Dockerfile +19 -0
- README.md +12 -0
- app.py +3 -0
- binary_classification.ipynb +558 -0
- classification.ipynb +632 -0
- dataset.py +96 -0
- main.py +119 -0
- requirements.txt +7 -0
- test.py +89 -0
- utils.py +12 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data/
|
2 |
+
__pycache__/
|
3 |
+
__MACOSX/
|
4 |
+
dataset.zip
|
5 |
+
*.pth
|
Dockerfile
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-devel
|
2 |
+
RUN apt-key adv --keyserver keyserver.ubuntu.com --recv-keys A4B469963BF863CC
|
3 |
+
RUN apt-get update && \
|
4 |
+
apt-get upgrade -y && \
|
5 |
+
apt-get install -y git
|
6 |
+
RUN apt-get -y install libgl1-mesa-glx libglib2.0-0
|
7 |
+
RUN apt-get -y install vim byobu aria2
|
8 |
+
|
9 |
+
COPY . /usr/src/motorbike_cls
|
10 |
+
# RUN ls /usr/src/motorbike_cls
|
11 |
+
RUN cd /usr/src/motorbike_cls
|
12 |
+
|
13 |
+
WORKDIR /usr/src/motorbike_cls
|
14 |
+
|
15 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
16 |
+
pip install -r /usr/src/motorbike_cls/requirements.txt
|
17 |
+
|
18 |
+
CMD ["test.py"]
|
19 |
+
ENTRYPOINT ["python3"]
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: HI Motorcycle Trunk Cls
|
3 |
+
emoji: 👀
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.24.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
print(os.getcwd())
|
binary_classification.ipynb
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"%matplotlib inline\n",
|
10 |
+
"%config InlineBackend.figure_format = 'retina'\n",
|
11 |
+
"\n",
|
12 |
+
"import os\n",
|
13 |
+
"import matplotlib.pyplot as plt\n",
|
14 |
+
"from pandas.core.common import flatten\n",
|
15 |
+
"import copy\n",
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import random\n",
|
18 |
+
"\n",
|
19 |
+
"import torch\n",
|
20 |
+
"from torch import nn\n",
|
21 |
+
"from torch import optim\n",
|
22 |
+
"import torch.nn.functional as F\n",
|
23 |
+
"from torchvision import datasets, transforms, models\n",
|
24 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
25 |
+
"import torch.nn as nn\n",
|
26 |
+
"import albumentations as A\n",
|
27 |
+
"from albumentations.pytorch import ToTensorV2\n",
|
28 |
+
"import cv2\n",
|
29 |
+
"\n",
|
30 |
+
"import glob\n",
|
31 |
+
"from tqdm import tqdm\n",
|
32 |
+
"import random"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 2,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"#######################################################\n",
|
42 |
+
"# Define Transforms\n",
|
43 |
+
"#######################################################\n",
|
44 |
+
"\n",
|
45 |
+
"#To define an augmentation pipeline, you need to create an instance of the Compose class.\n",
|
46 |
+
"#As an argument to the Compose class, you need to pass a list of augmentations you want to apply. \n",
|
47 |
+
"#A call to Compose will return a transform function that will perform image augmentation.\n",
|
48 |
+
"#(https://albumentations.ai/docs/getting_started/image_augmentation/)\n",
|
49 |
+
"\n",
|
50 |
+
"train_transforms = A.Compose(\n",
|
51 |
+
" [\n",
|
52 |
+
" A.SmallestMaxSize(max_size=350),\n",
|
53 |
+
" A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5),\n",
|
54 |
+
" A.RandomCrop(height=256, width=256),\n",
|
55 |
+
" A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),\n",
|
56 |
+
" A.RandomBrightnessContrast(p=0.5),\n",
|
57 |
+
" A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2),\n",
|
58 |
+
" A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),\n",
|
59 |
+
" A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),\n",
|
60 |
+
" A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),\n",
|
61 |
+
" ToTensorV2(),\n",
|
62 |
+
" ]\n",
|
63 |
+
")\n",
|
64 |
+
"\n",
|
65 |
+
"test_transforms = A.Compose(\n",
|
66 |
+
" [\n",
|
67 |
+
" A.SmallestMaxSize(max_size=350),\n",
|
68 |
+
" A.CenterCrop(height=256, width=256),\n",
|
69 |
+
" A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),\n",
|
70 |
+
" ToTensorV2(),\n",
|
71 |
+
" ]\n",
|
72 |
+
")"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 3,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"import os\n",
|
82 |
+
"import matplotlib.pyplot as plt\n",
|
83 |
+
"from pandas.core.common import flatten\n",
|
84 |
+
"import copy\n",
|
85 |
+
"import numpy as np\n",
|
86 |
+
"import random\n",
|
87 |
+
"\n",
|
88 |
+
"import torch\n",
|
89 |
+
"from torch import nn\n",
|
90 |
+
"from torch import optim\n",
|
91 |
+
"import torch.nn.functional as F\n",
|
92 |
+
"from torchvision import datasets, transforms, models\n",
|
93 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
94 |
+
"import torch.nn as nn\n",
|
95 |
+
"import albumentations as A\n",
|
96 |
+
"from albumentations.pytorch import ToTensorV2\n",
|
97 |
+
"import cv2\n",
|
98 |
+
"\n",
|
99 |
+
"import glob\n",
|
100 |
+
"from tqdm import tqdm\n",
|
101 |
+
"import random\n",
|
102 |
+
"\n",
|
103 |
+
"class MotorbikeDataset(torch.utils.data.Dataset):\n",
|
104 |
+
" def __init__(self, image_paths, transform=None):\n",
|
105 |
+
" self.root = image_paths\n",
|
106 |
+
" self.image_paths = os.listdir(image_paths)\n",
|
107 |
+
" self.transform = transform\n",
|
108 |
+
" \n",
|
109 |
+
" def __len__(self):\n",
|
110 |
+
" return len(self.image_paths)\n",
|
111 |
+
"\n",
|
112 |
+
" def __getitem__(self, idx):\n",
|
113 |
+
" image_filepath = self.image_paths[idx]\n",
|
114 |
+
" \n",
|
115 |
+
" image = cv2.imread(os.path.join(self.root,image_filepath))\n",
|
116 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
117 |
+
" \n",
|
118 |
+
" label = int('t' in image_filepath)\n",
|
119 |
+
" if self.transform is not None:\n",
|
120 |
+
" image = self.transform(image=image)[\"image\"]\n",
|
121 |
+
" \n",
|
122 |
+
" return image, label\n",
|
123 |
+
" \n",
|
124 |
+
"\n",
|
125 |
+
"class MotorbikeDataset_CV(torch.utils.data.Dataset):\n",
|
126 |
+
" def __init__(self, root, train_transforms, val_transforms, trainval_ratio=0.8) -> None:\n",
|
127 |
+
" self.root = root\n",
|
128 |
+
" self.train_transforms = train_transforms\n",
|
129 |
+
" self.val_transforms = val_transforms\n",
|
130 |
+
" self.trainval_ratio = trainval_ratio\n",
|
131 |
+
" self.train_split, self.val_split = self.gen_split()\n",
|
132 |
+
" \n",
|
133 |
+
" def __len__(self):\n",
|
134 |
+
" return len(self.root)\n",
|
135 |
+
"\n",
|
136 |
+
" def gen_split(self):\n",
|
137 |
+
" img_list = os.listdir(self.root)\n",
|
138 |
+
" n_list = [img for img in img_list if img.startswith('n_')]\n",
|
139 |
+
" t_list = [img for img in img_list if img.startswith('t_')]\n",
|
140 |
+
" \n",
|
141 |
+
" n_train = random.choices(n_list, k=int(len(n_list)*self.trainval_ratio))\n",
|
142 |
+
" t_train = random.choices(t_list, k=int(len(t_list)*self.trainval_ratio))\n",
|
143 |
+
" n_val = [img for img in n_list if img not in n_train]\n",
|
144 |
+
" t_val = [img for img in t_list if img not in t_train]\n",
|
145 |
+
" \n",
|
146 |
+
" train_split = n_train + t_train\n",
|
147 |
+
" val_split = n_val + t_val\n",
|
148 |
+
" return train_split, val_split\n",
|
149 |
+
"\n",
|
150 |
+
" def get_split(self):\n",
|
151 |
+
" train_dataset = Dataset_from_list(self.root, self.train_split, self.train_transforms)\n",
|
152 |
+
" val_dataset = Dataset_from_list(self.root, self.val_split, self.val_transforms)\n",
|
153 |
+
" return train_dataset, val_dataset\n",
|
154 |
+
" \n",
|
155 |
+
"class Dataset_from_list(torch.utils.data.Dataset):\n",
|
156 |
+
" def __init__(self, root, img_list, transform) -> None:\n",
|
157 |
+
" self.root = root\n",
|
158 |
+
" self.img_list = img_list\n",
|
159 |
+
" self.transform = transform\n",
|
160 |
+
" \n",
|
161 |
+
" def __len__(self):\n",
|
162 |
+
" return len(self.img_list)\n",
|
163 |
+
" \n",
|
164 |
+
" def __getitem__(self, idx):\n",
|
165 |
+
" image = cv2.imread(os.path.join(self.root, self.img_list[idx]))\n",
|
166 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
167 |
+
" \n",
|
168 |
+
" label = int(self.img_list[idx].startswith('t_'))\n",
|
169 |
+
" \n",
|
170 |
+
" if self.transform is not None:\n",
|
171 |
+
" image = self.transform(image=image)[\"image\"]\n",
|
172 |
+
" \n",
|
173 |
+
" return image, label\n",
|
174 |
+
" \n",
|
175 |
+
" \n",
|
176 |
+
" \n"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": 4,
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"dataset_CV = MotorbikeDataset_CV(\n",
|
186 |
+
" root='/workspace/data/',\n",
|
187 |
+
" train_transforms=train_transforms,\n",
|
188 |
+
" val_transforms=test_transforms\n",
|
189 |
+
" )"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 5,
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"train_dataset, val_dataset = dataset_CV.get_split()"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 6,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"name": "stdout",
|
208 |
+
"output_type": "stream",
|
209 |
+
"text": [
|
210 |
+
"277\n",
|
211 |
+
"150\n"
|
212 |
+
]
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"source": [
|
216 |
+
"print(len(train_dataset))\n",
|
217 |
+
"print(len(val_dataset))"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 7,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True)\n",
|
227 |
+
"val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False)"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": 8,
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [],
|
235 |
+
"source": [
|
236 |
+
"classes = ('no_trunk', 'trunk')"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 9,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": [
|
245 |
+
"device = torch.device(\"cuda:2\") if torch.cuda.is_available() else torch.device(\"cpu\")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 16,
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [
|
253 |
+
{
|
254 |
+
"data": {
|
255 |
+
"text/plain": [
|
256 |
+
"ResNet(\n",
|
257 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
258 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
259 |
+
" (relu): ReLU(inplace=True)\n",
|
260 |
+
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
261 |
+
" (layer1): Sequential(\n",
|
262 |
+
" (0): Bottleneck(\n",
|
263 |
+
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
264 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
265 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
266 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
267 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
268 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
269 |
+
" (relu): ReLU(inplace=True)\n",
|
270 |
+
" (downsample): Sequential(\n",
|
271 |
+
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
272 |
+
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
273 |
+
" )\n",
|
274 |
+
" )\n",
|
275 |
+
" (1): Bottleneck(\n",
|
276 |
+
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
277 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
278 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
279 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
280 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
281 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
282 |
+
" (relu): ReLU(inplace=True)\n",
|
283 |
+
" )\n",
|
284 |
+
" (2): Bottleneck(\n",
|
285 |
+
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
286 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
287 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
288 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
289 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
290 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
291 |
+
" (relu): ReLU(inplace=True)\n",
|
292 |
+
" )\n",
|
293 |
+
" )\n",
|
294 |
+
" (layer2): Sequential(\n",
|
295 |
+
" (0): Bottleneck(\n",
|
296 |
+
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
297 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
298 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
299 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
300 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
301 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
302 |
+
" (relu): ReLU(inplace=True)\n",
|
303 |
+
" (downsample): Sequential(\n",
|
304 |
+
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
305 |
+
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
306 |
+
" )\n",
|
307 |
+
" )\n",
|
308 |
+
" (1): Bottleneck(\n",
|
309 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
310 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
311 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
312 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
313 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
314 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
315 |
+
" (relu): ReLU(inplace=True)\n",
|
316 |
+
" )\n",
|
317 |
+
" (2): Bottleneck(\n",
|
318 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
319 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
320 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
321 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
322 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
323 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
324 |
+
" (relu): ReLU(inplace=True)\n",
|
325 |
+
" )\n",
|
326 |
+
" (3): Bottleneck(\n",
|
327 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
328 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
329 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
330 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
331 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
332 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
333 |
+
" (relu): ReLU(inplace=True)\n",
|
334 |
+
" )\n",
|
335 |
+
" )\n",
|
336 |
+
" (layer3): Sequential(\n",
|
337 |
+
" (0): Bottleneck(\n",
|
338 |
+
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
339 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
340 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
341 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
342 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
343 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
344 |
+
" (relu): ReLU(inplace=True)\n",
|
345 |
+
" (downsample): Sequential(\n",
|
346 |
+
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
347 |
+
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
348 |
+
" )\n",
|
349 |
+
" )\n",
|
350 |
+
" (1): Bottleneck(\n",
|
351 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
352 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
353 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
354 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
355 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
356 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
357 |
+
" (relu): ReLU(inplace=True)\n",
|
358 |
+
" )\n",
|
359 |
+
" (2): Bottleneck(\n",
|
360 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
361 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
362 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
363 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
364 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
365 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
366 |
+
" (relu): ReLU(inplace=True)\n",
|
367 |
+
" )\n",
|
368 |
+
" (3): Bottleneck(\n",
|
369 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
370 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
371 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
372 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
373 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
374 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
375 |
+
" (relu): ReLU(inplace=True)\n",
|
376 |
+
" )\n",
|
377 |
+
" (4): Bottleneck(\n",
|
378 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
379 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
380 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
381 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
382 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
383 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
384 |
+
" (relu): ReLU(inplace=True)\n",
|
385 |
+
" )\n",
|
386 |
+
" (5): Bottleneck(\n",
|
387 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
388 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
389 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
390 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
391 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
392 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
393 |
+
" (relu): ReLU(inplace=True)\n",
|
394 |
+
" )\n",
|
395 |
+
" )\n",
|
396 |
+
" (layer4): Sequential(\n",
|
397 |
+
" (0): Bottleneck(\n",
|
398 |
+
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
399 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
400 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
401 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
402 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
403 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
404 |
+
" (relu): ReLU(inplace=True)\n",
|
405 |
+
" (downsample): Sequential(\n",
|
406 |
+
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
407 |
+
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
408 |
+
" )\n",
|
409 |
+
" )\n",
|
410 |
+
" (1): Bottleneck(\n",
|
411 |
+
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
412 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
413 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
414 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
415 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
416 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
417 |
+
" (relu): ReLU(inplace=True)\n",
|
418 |
+
" )\n",
|
419 |
+
" (2): Bottleneck(\n",
|
420 |
+
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
421 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
422 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
423 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
424 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
425 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
426 |
+
" (relu): ReLU(inplace=True)\n",
|
427 |
+
" )\n",
|
428 |
+
" )\n",
|
429 |
+
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n",
|
430 |
+
" (fc): Sequential(\n",
|
431 |
+
" (0): Linear(in_features=2048, out_features=2, bias=True)\n",
|
432 |
+
" )\n",
|
433 |
+
")"
|
434 |
+
]
|
435 |
+
},
|
436 |
+
"execution_count": 16,
|
437 |
+
"metadata": {},
|
438 |
+
"output_type": "execute_result"
|
439 |
+
}
|
440 |
+
],
|
441 |
+
"source": [
|
442 |
+
"model = models.resnet50(pretrained=True)\n",
|
443 |
+
"model.fc = nn.Sequential(\n",
|
444 |
+
" # nn.Dropout(0.5),\n",
|
445 |
+
" nn.Linear(model.fc.in_features, 2),\n",
|
446 |
+
" # nn.Sigmoid()\n",
|
447 |
+
")\n",
|
448 |
+
"\n",
|
449 |
+
"for n, p in model.named_parameters():\n",
|
450 |
+
" if 'fc' in n:\n",
|
451 |
+
" p.requires_grad = True\n",
|
452 |
+
" else:\n",
|
453 |
+
" p.requires_grad = False\n",
|
454 |
+
"\n",
|
455 |
+
"model.to(device)"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"cell_type": "code",
|
460 |
+
"execution_count": 17,
|
461 |
+
"metadata": {},
|
462 |
+
"outputs": [],
|
463 |
+
"source": [
|
464 |
+
"import torch.optim as optim\n",
|
465 |
+
"criterion = nn.BCEWithLogitsLoss().to(device)\n",
|
466 |
+
"optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1, momentum=0.9)\n",
|
467 |
+
"# optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"execution_count": 18,
|
473 |
+
"metadata": {},
|
474 |
+
"outputs": [
|
475 |
+
{
|
476 |
+
"ename": "ValueError",
|
477 |
+
"evalue": "Target size (torch.Size([64])) must be the same as input size (torch.Size([64, 2]))",
|
478 |
+
"output_type": "error",
|
479 |
+
"traceback": [
|
480 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
481 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
482 |
+
"\u001b[0;32m/tmp/ipykernel_107755/1844816491.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcriterion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
483 |
+
"\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 1100\u001b[0m if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[1;32m 1101\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1102\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1103\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1104\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
484 |
+
"\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/nn/modules/loss.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input, target)\u001b[0m\n\u001b[1;32m 705\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 706\u001b[0m \u001b[0mpos_weight\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpos_weight\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 707\u001b[0;31m reduction=self.reduction)\n\u001b[0m\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 709\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
485 |
+
"\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py\u001b[0m in \u001b[0;36mbinary_cross_entropy_with_logits\u001b[0;34m(input, target, weight, size_average, reduce, reduction, pos_weight)\u001b[0m\n\u001b[1;32m 2978\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2979\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2980\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Target size ({}) must be the same as input size ({})\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtarget\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2981\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2982\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbinary_cross_entropy_with_logits\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpos_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreduction_enum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
486 |
+
"\u001b[0;31mValueError\u001b[0m: Target size (torch.Size([64])) must be the same as input size (torch.Size([64, 2]))"
|
487 |
+
]
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"source": [
|
491 |
+
"for epoch in range(10):\n",
|
492 |
+
" model.train()\n",
|
493 |
+
" running_loss = 0.0\n",
|
494 |
+
" for i, data in enumerate(train_loader, 0):\n",
|
495 |
+
" inputs, labels = data[0].to(device), data[1].to(device)\n",
|
496 |
+
" \n",
|
497 |
+
" optimizer.zero_grad()\n",
|
498 |
+
" \n",
|
499 |
+
" outputs = model(inputs)\n",
|
500 |
+
" loss = criterion(outputs, labels)\n",
|
501 |
+
" loss.backward()\n",
|
502 |
+
" optimizer.step()\n",
|
503 |
+
" running_loss += loss.item()\n",
|
504 |
+
" \n",
|
505 |
+
" print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')\n",
|
506 |
+
" # print(\"TRAIN acc = {}\".format(acc))\n",
|
507 |
+
" # running_loss = 0.0\n",
|
508 |
+
" \n",
|
509 |
+
" with torch.no_grad():\n",
|
510 |
+
" model.eval()\n",
|
511 |
+
" running_loss = 0.0\n",
|
512 |
+
" correct =0\n",
|
513 |
+
" for i, data in enumerate(val_loader, 0):\n",
|
514 |
+
" inputs, labels = data[0].to(device), data[1].to(device)\n",
|
515 |
+
" outputs = model(inputs)\n",
|
516 |
+
" _, preds = outputs.max(1)\n",
|
517 |
+
" loss = criterion(outputs, labels)\n",
|
518 |
+
" running_loss += loss.item()\n",
|
519 |
+
" labels_one_hot = F.one_hot(labels, 2)\n",
|
520 |
+
" outputs_one_hot = F.one_hot(preds, 2)\n",
|
521 |
+
" correct = correct + (labels_one_hot + outputs_one_hot == 2).sum(dim=0).to(torch.float)\n",
|
522 |
+
" \n",
|
523 |
+
" acc = 100 * correct / len(val_dataset)\n",
|
524 |
+
" print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')\n",
|
525 |
+
" print(\"VAL acc = {}\".format(acc))"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": null,
|
531 |
+
"metadata": {},
|
532 |
+
"outputs": [],
|
533 |
+
"source": []
|
534 |
+
}
|
535 |
+
],
|
536 |
+
"metadata": {
|
537 |
+
"kernelspec": {
|
538 |
+
"display_name": "base",
|
539 |
+
"language": "python",
|
540 |
+
"name": "python3"
|
541 |
+
},
|
542 |
+
"language_info": {
|
543 |
+
"codemirror_mode": {
|
544 |
+
"name": "ipython",
|
545 |
+
"version": 3
|
546 |
+
},
|
547 |
+
"file_extension": ".py",
|
548 |
+
"mimetype": "text/x-python",
|
549 |
+
"name": "python",
|
550 |
+
"nbconvert_exporter": "python",
|
551 |
+
"pygments_lexer": "ipython3",
|
552 |
+
"version": "3.7.11"
|
553 |
+
},
|
554 |
+
"orig_nbformat": 4
|
555 |
+
},
|
556 |
+
"nbformat": 4,
|
557 |
+
"nbformat_minor": 2
|
558 |
+
}
|
classification.ipynb
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 10,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"%matplotlib inline\n",
|
10 |
+
"%config InlineBackend.figure_format = 'retina'\n",
|
11 |
+
"\n",
|
12 |
+
"import os\n",
|
13 |
+
"import matplotlib.pyplot as plt\n",
|
14 |
+
"from pandas.core.common import flatten\n",
|
15 |
+
"import copy\n",
|
16 |
+
"import numpy as np\n",
|
17 |
+
"import random\n",
|
18 |
+
"\n",
|
19 |
+
"import torch\n",
|
20 |
+
"from torch import nn\n",
|
21 |
+
"from torch import optim\n",
|
22 |
+
"import torch.nn.functional as F\n",
|
23 |
+
"from torchvision import datasets, transforms, models\n",
|
24 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
25 |
+
"import torch.nn as nn\n",
|
26 |
+
"import albumentations as A\n",
|
27 |
+
"from albumentations.pytorch import ToTensorV2\n",
|
28 |
+
"import cv2\n",
|
29 |
+
"\n",
|
30 |
+
"import glob\n",
|
31 |
+
"from tqdm import tqdm\n",
|
32 |
+
"import random"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 11,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"#######################################################\n",
|
42 |
+
"# Define Transforms\n",
|
43 |
+
"#######################################################\n",
|
44 |
+
"\n",
|
45 |
+
"#To define an augmentation pipeline, you need to create an instance of the Compose class.\n",
|
46 |
+
"#As an argument to the Compose class, you need to pass a list of augmentations you want to apply. \n",
|
47 |
+
"#A call to Compose will return a transform function that will perform image augmentation.\n",
|
48 |
+
"#(https://albumentations.ai/docs/getting_started/image_augmentation/)\n",
|
49 |
+
"\n",
|
50 |
+
"train_transforms = A.Compose(\n",
|
51 |
+
" [\n",
|
52 |
+
" A.SmallestMaxSize(max_size=350),\n",
|
53 |
+
" A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5),\n",
|
54 |
+
" A.RandomCrop(height=256, width=256),\n",
|
55 |
+
" A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),\n",
|
56 |
+
" A.RandomBrightnessContrast(p=0.5),\n",
|
57 |
+
" A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2),\n",
|
58 |
+
" A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),\n",
|
59 |
+
" A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),\n",
|
60 |
+
" A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),\n",
|
61 |
+
" ToTensorV2(),\n",
|
62 |
+
" ]\n",
|
63 |
+
")\n",
|
64 |
+
"\n",
|
65 |
+
"test_transforms = A.Compose(\n",
|
66 |
+
" [\n",
|
67 |
+
" A.SmallestMaxSize(max_size=350),\n",
|
68 |
+
" A.CenterCrop(height=256, width=256),\n",
|
69 |
+
" A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),\n",
|
70 |
+
" ToTensorV2(),\n",
|
71 |
+
" ]\n",
|
72 |
+
")"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": 12,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"import os\n",
|
82 |
+
"import matplotlib.pyplot as plt\n",
|
83 |
+
"from pandas.core.common import flatten\n",
|
84 |
+
"import copy\n",
|
85 |
+
"import numpy as np\n",
|
86 |
+
"import random\n",
|
87 |
+
"\n",
|
88 |
+
"import torch\n",
|
89 |
+
"from torch import nn\n",
|
90 |
+
"from torch import optim\n",
|
91 |
+
"import torch.nn.functional as F\n",
|
92 |
+
"from torchvision import datasets, transforms, models\n",
|
93 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
94 |
+
"import torch.nn as nn\n",
|
95 |
+
"import albumentations as A\n",
|
96 |
+
"from albumentations.pytorch import ToTensorV2\n",
|
97 |
+
"import cv2\n",
|
98 |
+
"\n",
|
99 |
+
"import glob\n",
|
100 |
+
"from tqdm import tqdm\n",
|
101 |
+
"import random\n",
|
102 |
+
"\n",
|
103 |
+
"class MotorbikeDataset(torch.utils.data.Dataset):\n",
|
104 |
+
" def __init__(self, image_paths, transform=None):\n",
|
105 |
+
" self.root = image_paths\n",
|
106 |
+
" self.image_paths = os.listdir(image_paths)\n",
|
107 |
+
" self.transform = transform\n",
|
108 |
+
" \n",
|
109 |
+
" def __len__(self):\n",
|
110 |
+
" return len(self.image_paths)\n",
|
111 |
+
"\n",
|
112 |
+
" def __getitem__(self, idx):\n",
|
113 |
+
" image_filepath = self.image_paths[idx]\n",
|
114 |
+
" \n",
|
115 |
+
" image = cv2.imread(os.path.join(self.root,image_filepath))\n",
|
116 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
117 |
+
" \n",
|
118 |
+
" label = int('t' in image_filepath)\n",
|
119 |
+
" if self.transform is not None:\n",
|
120 |
+
" image = self.transform(image=image)[\"image\"]\n",
|
121 |
+
" \n",
|
122 |
+
" return image, label\n",
|
123 |
+
" \n",
|
124 |
+
"\n",
|
125 |
+
"class MotorbikeDataset_CV(torch.utils.data.Dataset):\n",
|
126 |
+
" def __init__(self, root, train_transforms, val_transforms, trainval_ratio=0.8) -> None:\n",
|
127 |
+
" self.root = root\n",
|
128 |
+
" self.train_transforms = train_transforms\n",
|
129 |
+
" self.val_transforms = val_transforms\n",
|
130 |
+
" self.trainval_ratio = trainval_ratio\n",
|
131 |
+
" self.train_split, self.val_split = self.gen_split()\n",
|
132 |
+
" \n",
|
133 |
+
" def __len__(self):\n",
|
134 |
+
" return len(self.root)\n",
|
135 |
+
"\n",
|
136 |
+
" def gen_split(self):\n",
|
137 |
+
" img_list = os.listdir(self.root)\n",
|
138 |
+
" n_list = [img for img in img_list if img.startswith('n_')]\n",
|
139 |
+
" t_list = [img for img in img_list if img.startswith('t_')]\n",
|
140 |
+
" \n",
|
141 |
+
" n_train = random.choices(n_list, k=int(len(n_list)*self.trainval_ratio))\n",
|
142 |
+
" t_train = random.choices(t_list, k=int(len(t_list)*self.trainval_ratio))\n",
|
143 |
+
" n_val = [img for img in n_list if img not in n_train]\n",
|
144 |
+
" t_val = [img for img in t_list if img not in t_train]\n",
|
145 |
+
" \n",
|
146 |
+
" train_split = n_train + t_train\n",
|
147 |
+
" val_split = n_val + t_val\n",
|
148 |
+
" return train_split, val_split\n",
|
149 |
+
"\n",
|
150 |
+
" def get_split(self):\n",
|
151 |
+
" train_dataset = Dataset_from_list(self.root, self.train_split, self.train_transforms)\n",
|
152 |
+
" val_dataset = Dataset_from_list(self.root, self.val_split, self.val_transforms)\n",
|
153 |
+
" return train_dataset, val_dataset\n",
|
154 |
+
" \n",
|
155 |
+
"class Dataset_from_list(torch.utils.data.Dataset):\n",
|
156 |
+
" def __init__(self, root, img_list, transform) -> None:\n",
|
157 |
+
" self.root = root\n",
|
158 |
+
" self.img_list = img_list\n",
|
159 |
+
" self.transform = transform\n",
|
160 |
+
" \n",
|
161 |
+
" def __len__(self):\n",
|
162 |
+
" return len(self.img_list)\n",
|
163 |
+
" \n",
|
164 |
+
" def __getitem__(self, idx):\n",
|
165 |
+
" image = cv2.imread(os.path.join(self.root, self.img_list[idx]))\n",
|
166 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
167 |
+
" \n",
|
168 |
+
" label = int(self.img_list[idx].startswith('t_'))\n",
|
169 |
+
" \n",
|
170 |
+
" if self.transform is not None:\n",
|
171 |
+
" image = self.transform(image=image)[\"image\"]\n",
|
172 |
+
" \n",
|
173 |
+
" return image, label\n",
|
174 |
+
" \n",
|
175 |
+
" \n",
|
176 |
+
" \n"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": 13,
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"dataset_CV = MotorbikeDataset_CV(\n",
|
186 |
+
" root='/workspace/data/',\n",
|
187 |
+
" train_transforms=train_transforms,\n",
|
188 |
+
" val_transforms=test_transforms\n",
|
189 |
+
" )"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 14,
|
195 |
+
"metadata": {},
|
196 |
+
"outputs": [],
|
197 |
+
"source": [
|
198 |
+
"train_dataset, val_dataset = dataset_CV.get_split()"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": 15,
|
204 |
+
"metadata": {},
|
205 |
+
"outputs": [
|
206 |
+
{
|
207 |
+
"name": "stdout",
|
208 |
+
"output_type": "stream",
|
209 |
+
"text": [
|
210 |
+
"277\n",
|
211 |
+
"166\n"
|
212 |
+
]
|
213 |
+
}
|
214 |
+
],
|
215 |
+
"source": [
|
216 |
+
"print(len(train_dataset))\n",
|
217 |
+
"print(len(val_dataset))"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 16,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True)\n",
|
227 |
+
"val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False)"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": 17,
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [],
|
235 |
+
"source": [
|
236 |
+
"classes = ('no_trunk', 'trunk')"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 18,
|
242 |
+
"metadata": {},
|
243 |
+
"outputs": [],
|
244 |
+
"source": [
|
245 |
+
"device = torch.device(\"cuda:1\") if torch.cuda.is_available() else torch.device(\"cpu\")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 28,
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [
|
253 |
+
{
|
254 |
+
"data": {
|
255 |
+
"text/plain": [
|
256 |
+
"ResNet(\n",
|
257 |
+
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
|
258 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
259 |
+
" (relu): ReLU(inplace=True)\n",
|
260 |
+
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
|
261 |
+
" (layer1): Sequential(\n",
|
262 |
+
" (0): Bottleneck(\n",
|
263 |
+
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
264 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
265 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
266 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
267 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
268 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
269 |
+
" (relu): ReLU(inplace=True)\n",
|
270 |
+
" (downsample): Sequential(\n",
|
271 |
+
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
272 |
+
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
273 |
+
" )\n",
|
274 |
+
" )\n",
|
275 |
+
" (1): Bottleneck(\n",
|
276 |
+
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
277 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
278 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
279 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
280 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
281 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
282 |
+
" (relu): ReLU(inplace=True)\n",
|
283 |
+
" )\n",
|
284 |
+
" (2): Bottleneck(\n",
|
285 |
+
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
286 |
+
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
287 |
+
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
288 |
+
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
289 |
+
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
290 |
+
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
291 |
+
" (relu): ReLU(inplace=True)\n",
|
292 |
+
" )\n",
|
293 |
+
" )\n",
|
294 |
+
" (layer2): Sequential(\n",
|
295 |
+
" (0): Bottleneck(\n",
|
296 |
+
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
297 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
298 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
299 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
300 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
301 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
302 |
+
" (relu): ReLU(inplace=True)\n",
|
303 |
+
" (downsample): Sequential(\n",
|
304 |
+
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
305 |
+
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
306 |
+
" )\n",
|
307 |
+
" )\n",
|
308 |
+
" (1): Bottleneck(\n",
|
309 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
310 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
311 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
312 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
313 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
314 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
315 |
+
" (relu): ReLU(inplace=True)\n",
|
316 |
+
" )\n",
|
317 |
+
" (2): Bottleneck(\n",
|
318 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
319 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
320 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
321 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
322 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
323 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
324 |
+
" (relu): ReLU(inplace=True)\n",
|
325 |
+
" )\n",
|
326 |
+
" (3): Bottleneck(\n",
|
327 |
+
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
328 |
+
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
329 |
+
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
330 |
+
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
331 |
+
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
332 |
+
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
333 |
+
" (relu): ReLU(inplace=True)\n",
|
334 |
+
" )\n",
|
335 |
+
" )\n",
|
336 |
+
" (layer3): Sequential(\n",
|
337 |
+
" (0): Bottleneck(\n",
|
338 |
+
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
339 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
340 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
341 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
342 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
343 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
344 |
+
" (relu): ReLU(inplace=True)\n",
|
345 |
+
" (downsample): Sequential(\n",
|
346 |
+
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
347 |
+
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
348 |
+
" )\n",
|
349 |
+
" )\n",
|
350 |
+
" (1): Bottleneck(\n",
|
351 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
352 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
353 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
354 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
355 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
356 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
357 |
+
" (relu): ReLU(inplace=True)\n",
|
358 |
+
" )\n",
|
359 |
+
" (2): Bottleneck(\n",
|
360 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
361 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
362 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
363 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
364 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
365 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
366 |
+
" (relu): ReLU(inplace=True)\n",
|
367 |
+
" )\n",
|
368 |
+
" (3): Bottleneck(\n",
|
369 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
370 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
371 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
372 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
373 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
374 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
375 |
+
" (relu): ReLU(inplace=True)\n",
|
376 |
+
" )\n",
|
377 |
+
" (4): Bottleneck(\n",
|
378 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
379 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
380 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
381 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
382 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
383 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
384 |
+
" (relu): ReLU(inplace=True)\n",
|
385 |
+
" )\n",
|
386 |
+
" (5): Bottleneck(\n",
|
387 |
+
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
388 |
+
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
389 |
+
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
390 |
+
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
391 |
+
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
392 |
+
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
393 |
+
" (relu): ReLU(inplace=True)\n",
|
394 |
+
" )\n",
|
395 |
+
" )\n",
|
396 |
+
" (layer4): Sequential(\n",
|
397 |
+
" (0): Bottleneck(\n",
|
398 |
+
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
399 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
400 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
|
401 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
402 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
403 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
404 |
+
" (relu): ReLU(inplace=True)\n",
|
405 |
+
" (downsample): Sequential(\n",
|
406 |
+
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
|
407 |
+
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
408 |
+
" )\n",
|
409 |
+
" )\n",
|
410 |
+
" (1): Bottleneck(\n",
|
411 |
+
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
412 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
413 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
414 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
415 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
416 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
417 |
+
" (relu): ReLU(inplace=True)\n",
|
418 |
+
" )\n",
|
419 |
+
" (2): Bottleneck(\n",
|
420 |
+
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
421 |
+
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
422 |
+
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
423 |
+
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
424 |
+
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
425 |
+
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
|
426 |
+
" (relu): ReLU(inplace=True)\n",
|
427 |
+
" )\n",
|
428 |
+
" )\n",
|
429 |
+
" (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))\n",
|
430 |
+
" (fc): Sequential(\n",
|
431 |
+
" (0): Linear(in_features=2048, out_features=2, bias=True)\n",
|
432 |
+
" )\n",
|
433 |
+
")"
|
434 |
+
]
|
435 |
+
},
|
436 |
+
"execution_count": 28,
|
437 |
+
"metadata": {},
|
438 |
+
"output_type": "execute_result"
|
439 |
+
}
|
440 |
+
],
|
441 |
+
"source": [
|
442 |
+
"model = models.resnet50(pretrained=True)\n",
|
443 |
+
"model.fc = nn.Sequential(\n",
|
444 |
+
" # nn.Dropout(0.5),\n",
|
445 |
+
" nn.Linear(model.fc.in_features, 2)\n",
|
446 |
+
")\n",
|
447 |
+
"\n",
|
448 |
+
"for n, p in model.named_parameters():\n",
|
449 |
+
" if 'fc' in n:\n",
|
450 |
+
" p.requires_grad = True\n",
|
451 |
+
" else:\n",
|
452 |
+
" p.requires_grad = False\n",
|
453 |
+
"\n",
|
454 |
+
"model.to(device)"
|
455 |
+
]
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"cell_type": "code",
|
459 |
+
"execution_count": 31,
|
460 |
+
"metadata": {},
|
461 |
+
"outputs": [],
|
462 |
+
"source": [
|
463 |
+
"import torch.optim as optim\n",
|
464 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
465 |
+
"optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1, momentum=0.9)\n",
|
466 |
+
"# optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9)"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": 32,
|
472 |
+
"metadata": {},
|
473 |
+
"outputs": [
|
474 |
+
{
|
475 |
+
"name": "stdout",
|
476 |
+
"output_type": "stream",
|
477 |
+
"text": [
|
478 |
+
"[1, 4] loss: 0.009\n",
|
479 |
+
"VAL: [1, 3] loss: 0.028\n",
|
480 |
+
"VAL acc = tensor([51.8072, 0.0000], device='cuda:1')\n",
|
481 |
+
"[2, 4] loss: 0.026\n",
|
482 |
+
"VAL: [2, 3] loss: 0.018\n",
|
483 |
+
"VAL acc = tensor([51.8072, 0.0000], device='cuda:1')\n",
|
484 |
+
"[3, 4] loss: 0.014\n",
|
485 |
+
"VAL: [3, 3] loss: 0.003\n",
|
486 |
+
"VAL acc = tensor([50.6024, 33.7349], device='cuda:1')\n",
|
487 |
+
"[4, 4] loss: 0.006\n",
|
488 |
+
"VAL: [4, 3] loss: 0.006\n",
|
489 |
+
"VAL acc = tensor([21.0843, 46.9879], device='cuda:1')\n",
|
490 |
+
"[5, 4] loss: 0.007\n",
|
491 |
+
"VAL: [5, 3] loss: 0.006\n",
|
492 |
+
"VAL acc = tensor([50.6024, 30.1205], device='cuda:1')\n",
|
493 |
+
"[6, 4] loss: 0.005\n",
|
494 |
+
"VAL: [6, 3] loss: 0.003\n",
|
495 |
+
"VAL acc = tensor([50.0000, 38.5542], device='cuda:1')\n",
|
496 |
+
"[7, 4] loss: 0.005\n",
|
497 |
+
"VAL: [7, 3] loss: 0.002\n",
|
498 |
+
"VAL acc = tensor([49.3976, 39.7590], device='cuda:1')\n",
|
499 |
+
"[8, 4] loss: 0.003\n",
|
500 |
+
"VAL: [8, 3] loss: 0.004\n",
|
501 |
+
"VAL acc = tensor([50.6024, 33.1325], device='cuda:1')\n",
|
502 |
+
"[9, 4] loss: 0.005\n",
|
503 |
+
"VAL: [9, 3] loss: 0.002\n",
|
504 |
+
"VAL acc = tensor([48.1928, 41.5663], device='cuda:1')\n",
|
505 |
+
"[10, 4] loss: 0.004\n",
|
506 |
+
"VAL: [10, 3] loss: 0.002\n",
|
507 |
+
"VAL acc = tensor([49.3976, 38.5542], device='cuda:1')\n"
|
508 |
+
]
|
509 |
+
}
|
510 |
+
],
|
511 |
+
"source": [
|
512 |
+
"for epoch in range(10):\n",
|
513 |
+
" model.train()\n",
|
514 |
+
" running_loss = 0.0\n",
|
515 |
+
" for i, data in enumerate(train_loader, 0):\n",
|
516 |
+
" inputs, labels = data[0].to(device), data[1].to(device)\n",
|
517 |
+
" \n",
|
518 |
+
" optimizer.zero_grad()\n",
|
519 |
+
" \n",
|
520 |
+
" outputs = model(inputs)\n",
|
521 |
+
" loss = criterion(outputs, labels)\n",
|
522 |
+
" loss.backward()\n",
|
523 |
+
" optimizer.step()\n",
|
524 |
+
" running_loss += loss.item()\n",
|
525 |
+
" \n",
|
526 |
+
" print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')\n",
|
527 |
+
" # print(\"TRAIN acc = {}\".format(acc))\n",
|
528 |
+
" # running_loss = 0.0\n",
|
529 |
+
" \n",
|
530 |
+
" with torch.no_grad():\n",
|
531 |
+
" model.eval()\n",
|
532 |
+
" running_loss = 0.0\n",
|
533 |
+
" correct =0\n",
|
534 |
+
" for i, data in enumerate(val_loader, 0):\n",
|
535 |
+
" inputs, labels = data[0].to(device), data[1].to(device)\n",
|
536 |
+
" outputs = model(inputs)\n",
|
537 |
+
" _, preds = outputs.max(1)\n",
|
538 |
+
" loss = criterion(outputs, labels)\n",
|
539 |
+
" running_loss += loss.item()\n",
|
540 |
+
" labels_one_hot = F.one_hot(labels, 2)\n",
|
541 |
+
" outputs_one_hot = F.one_hot(preds, 2)\n",
|
542 |
+
" correct = correct + (labels_one_hot + outputs_one_hot == 2).sum(dim=0).to(torch.float)\n",
|
543 |
+
" \n",
|
544 |
+
" acc = 100 * correct / len(val_dataset)\n",
|
545 |
+
" print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')\n",
|
546 |
+
" print(\"VAL acc = {}\".format(acc))"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 34,
|
552 |
+
"metadata": {},
|
553 |
+
"outputs": [
|
554 |
+
{
|
555 |
+
"data": {
|
556 |
+
"text/plain": [
|
557 |
+
"349"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
"execution_count": 34,
|
561 |
+
"metadata": {},
|
562 |
+
"output_type": "execute_result"
|
563 |
+
}
|
564 |
+
],
|
565 |
+
"source": [
|
566 |
+
"len(os.listdir('/workspace//data'))"
|
567 |
+
]
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"cell_type": "code",
|
571 |
+
"execution_count": null,
|
572 |
+
"metadata": {},
|
573 |
+
"outputs": [],
|
574 |
+
"source": []
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"cell_type": "code",
|
578 |
+
"execution_count": 40,
|
579 |
+
"metadata": {},
|
580 |
+
"outputs": [
|
581 |
+
{
|
582 |
+
"name": "stdout",
|
583 |
+
"output_type": "stream",
|
584 |
+
"text": [
|
585 |
+
"n_0000000187.jpg\n",
|
586 |
+
"t_0000000182.jpg\n"
|
587 |
+
]
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"source": [
|
591 |
+
"root = '/workspace/data'\n",
|
592 |
+
"for img in os.listdir(root):\n",
|
593 |
+
" try:\n",
|
594 |
+
" image = cv2.imread(os.path.join(root,img))\n",
|
595 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
596 |
+
" except:\n",
|
597 |
+
" print(img)\n",
|
598 |
+
" \n",
|
599 |
+
" "
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "code",
|
604 |
+
"execution_count": null,
|
605 |
+
"metadata": {},
|
606 |
+
"outputs": [],
|
607 |
+
"source": []
|
608 |
+
}
|
609 |
+
],
|
610 |
+
"metadata": {
|
611 |
+
"kernelspec": {
|
612 |
+
"display_name": "base",
|
613 |
+
"language": "python",
|
614 |
+
"name": "python3"
|
615 |
+
},
|
616 |
+
"language_info": {
|
617 |
+
"codemirror_mode": {
|
618 |
+
"name": "ipython",
|
619 |
+
"version": 3
|
620 |
+
},
|
621 |
+
"file_extension": ".py",
|
622 |
+
"mimetype": "text/x-python",
|
623 |
+
"name": "python",
|
624 |
+
"nbconvert_exporter": "python",
|
625 |
+
"pygments_lexer": "ipython3",
|
626 |
+
"version": "3.7.11"
|
627 |
+
},
|
628 |
+
"orig_nbformat": 4
|
629 |
+
},
|
630 |
+
"nbformat": 4,
|
631 |
+
"nbformat_minor": 2
|
632 |
+
}
|
dataset.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from pandas.core.common import flatten
|
4 |
+
import copy
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch import optim
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torchvision import datasets, transforms, models
|
13 |
+
from torch.utils.data import Dataset, DataLoader
|
14 |
+
import torch.nn as nn
|
15 |
+
import albumentations as A
|
16 |
+
from albumentations.pytorch import ToTensorV2
|
17 |
+
import cv2
|
18 |
+
|
19 |
+
import glob
|
20 |
+
from tqdm import tqdm
|
21 |
+
import random
|
22 |
+
|
23 |
+
class MotorbikeDataset(torch.utils.data.Dataset):
|
24 |
+
def __init__(self, image_paths, transform=None):
|
25 |
+
self.root = image_paths
|
26 |
+
self.image_paths = os.listdir(image_paths)
|
27 |
+
self.transform = transform
|
28 |
+
|
29 |
+
def __len__(self):
|
30 |
+
return len(self.image_paths)
|
31 |
+
|
32 |
+
def __getitem__(self, idx):
|
33 |
+
image_filepath = self.image_paths[idx]
|
34 |
+
|
35 |
+
image = cv2.imread(os.path.join(self.root,image_filepath))
|
36 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
37 |
+
|
38 |
+
label = int('t' in image_filepath)
|
39 |
+
if self.transform is not None:
|
40 |
+
image = self.transform(image=image)["image"]
|
41 |
+
|
42 |
+
return image, label
|
43 |
+
|
44 |
+
|
45 |
+
class MotorbikeDataset_CV(torch.utils.data.Dataset):
|
46 |
+
def __init__(self, root, train_transforms, val_transforms, trainval_ratio=0.8) -> None:
|
47 |
+
self.root = root
|
48 |
+
self.train_transforms = train_transforms
|
49 |
+
self.val_transforms = val_transforms
|
50 |
+
self.trainval_ratio = trainval_ratio
|
51 |
+
self.train_split, self.val_split = self.gen_split()
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return len(self.root)
|
55 |
+
|
56 |
+
def gen_split(self):
|
57 |
+
img_list = os.listdir(self.root)
|
58 |
+
n_list = [img for img in img_list if img.startswith('n_')]
|
59 |
+
t_list = [img for img in img_list if img.startswith('t_')]
|
60 |
+
|
61 |
+
n_train = random.choices(n_list, k=int(len(n_list)*self.trainval_ratio))
|
62 |
+
t_train = random.choices(t_list, k=int(len(t_list)*self.trainval_ratio))
|
63 |
+
n_val = [img for img in n_list if img not in n_train]
|
64 |
+
t_val = [img for img in t_list if img not in t_train]
|
65 |
+
|
66 |
+
train_split = n_train + t_train
|
67 |
+
val_split = n_val + t_val
|
68 |
+
return train_split, val_split
|
69 |
+
|
70 |
+
def get_split(self):
|
71 |
+
train_dataset = Dataset_from_list(self.root, self.train_split, self.train_transforms)
|
72 |
+
val_dataset = Dataset_from_list(self.root, self.val_split, self.val_transforms)
|
73 |
+
return train_dataset, val_dataset
|
74 |
+
|
75 |
+
class Dataset_from_list(torch.utils.data.Dataset):
|
76 |
+
def __init__(self, root, img_list, transform) -> None:
|
77 |
+
self.root = root
|
78 |
+
self.img_list = img_list
|
79 |
+
self.transform = transform
|
80 |
+
|
81 |
+
def __len__(self):
|
82 |
+
return len(self.img_list)
|
83 |
+
|
84 |
+
def __getitem__(self, idx):
|
85 |
+
image = cv2.imread(os.path.join(self.root, self.img_list[idx]))
|
86 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
87 |
+
|
88 |
+
label = int(self.img_list[idx].startswith('t_'))
|
89 |
+
|
90 |
+
if self.transform is not None:
|
91 |
+
image = self.transform(image=image)["image"]
|
92 |
+
|
93 |
+
return image, label
|
94 |
+
|
95 |
+
|
96 |
+
|
main.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from pandas.core.common import flatten
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch import optim
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.optim as optim
|
13 |
+
from torch.utils.data import Dataset, DataLoader
|
14 |
+
from torchvision import datasets, transforms, models
|
15 |
+
import albumentations as A
|
16 |
+
from albumentations.pytorch import ToTensorV2
|
17 |
+
|
18 |
+
from tqdm import tqdm
|
19 |
+
import random
|
20 |
+
|
21 |
+
sys.path.append('/workspace')
|
22 |
+
import dataset
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
train_transforms = A.Compose(
|
27 |
+
[
|
28 |
+
A.SmallestMaxSize(max_size=350),
|
29 |
+
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=360, p=0.5),
|
30 |
+
A.RandomCrop(height=256, width=256),
|
31 |
+
A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),
|
32 |
+
A.RandomBrightnessContrast(p=0.5),
|
33 |
+
A.MultiplicativeNoise(multiplier=[0.5,2], per_channel=True, p=0.2),
|
34 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
35 |
+
A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
|
36 |
+
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
|
37 |
+
ToTensorV2(),
|
38 |
+
]
|
39 |
+
)
|
40 |
+
|
41 |
+
test_transforms = A.Compose(
|
42 |
+
[
|
43 |
+
A.SmallestMaxSize(max_size=350),
|
44 |
+
A.CenterCrop(height=256, width=256),
|
45 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
46 |
+
ToTensorV2(),
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
dataset_CV = dataset.MotorbikeDataset_CV(
|
51 |
+
root='/workspace/data/',
|
52 |
+
train_transforms=train_transforms,
|
53 |
+
val_transforms=test_transforms
|
54 |
+
)
|
55 |
+
|
56 |
+
train_dataset, val_dataset = dataset_CV.get_split()
|
57 |
+
|
58 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, drop_last=True)
|
59 |
+
val_loader = DataLoader(val_dataset,batch_size=64, shuffle=False)
|
60 |
+
|
61 |
+
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")
|
62 |
+
|
63 |
+
model = models.resnet50(pretrained=True)
|
64 |
+
model.fc = nn.Sequential(
|
65 |
+
nn.Dropout(0.5),
|
66 |
+
nn.Linear(model.fc.in_features, 2)
|
67 |
+
)
|
68 |
+
|
69 |
+
for n, p in model.named_parameters():
|
70 |
+
if 'fc' in n:
|
71 |
+
p.requires_grad = True
|
72 |
+
else:
|
73 |
+
p.requires_grad = False
|
74 |
+
|
75 |
+
model.to(device)
|
76 |
+
|
77 |
+
criterion = nn.CrossEntropyLoss()
|
78 |
+
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
79 |
+
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
|
80 |
+
best_acc = 0.0
|
81 |
+
|
82 |
+
for epoch in range(10):
|
83 |
+
model.train()
|
84 |
+
running_loss = 0.0
|
85 |
+
for i, data in enumerate(train_loader, 0):
|
86 |
+
inputs, labels = data[0].to(device), data[1].to(device)
|
87 |
+
|
88 |
+
optimizer.zero_grad()
|
89 |
+
|
90 |
+
outputs = model(inputs)
|
91 |
+
loss = criterion(outputs, labels)
|
92 |
+
loss.backward()
|
93 |
+
optimizer.step()
|
94 |
+
running_loss += loss.item()
|
95 |
+
scheduler.step()
|
96 |
+
|
97 |
+
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
|
98 |
+
# print("TRAIN acc = {}".format(acc))
|
99 |
+
running_loss = 0.0
|
100 |
+
|
101 |
+
with torch.no_grad():
|
102 |
+
model.eval()
|
103 |
+
running_loss = 0.0
|
104 |
+
correct =0
|
105 |
+
for i, data in enumerate(val_loader, 0):
|
106 |
+
inputs, labels = data[0].to(device), data[1].to(device)
|
107 |
+
outputs = model(inputs)
|
108 |
+
_, preds = outputs.max(1)
|
109 |
+
loss = criterion(outputs, labels)
|
110 |
+
running_loss += loss.item()
|
111 |
+
labels_one_hot = F.one_hot(labels, 2)
|
112 |
+
outputs_one_hot = F.one_hot(preds, 2)
|
113 |
+
correct = correct + (labels_one_hot + outputs_one_hot == 2).sum().to(torch.float)
|
114 |
+
|
115 |
+
acc = 100 * correct / len(val_dataset)
|
116 |
+
print(f'VAL: [{epoch + 1}, {i + 1:5d}] loss: {running_loss / len(val_loader):.3f}')
|
117 |
+
print("VAL acc = {:.2f}".format(acc))
|
118 |
+
if best_acc < acc:
|
119 |
+
torch.save(model.state_dict(), './result/best_model.pth')
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
albumentations
|
4 |
+
opencv-python
|
5 |
+
tqdm
|
6 |
+
matplotlib
|
7 |
+
jupyter
|
test.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from pandas.core.common import flatten
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch import optim
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.optim as optim
|
13 |
+
from torch.utils.data import Dataset, DataLoader
|
14 |
+
from torchvision import datasets, transforms, models
|
15 |
+
import albumentations as A
|
16 |
+
from albumentations.pytorch import ToTensorV2
|
17 |
+
|
18 |
+
from tqdm import tqdm
|
19 |
+
import random
|
20 |
+
import cv2
|
21 |
+
|
22 |
+
sys.path.append('/workspace')
|
23 |
+
import dataset
|
24 |
+
import argparse
|
25 |
+
|
26 |
+
def parse_args():
|
27 |
+
parser = argparse.ArgumentParser(description='MiSLAS training (Stage-2)')
|
28 |
+
parser.add_argument('--input',
|
29 |
+
help='test image path',
|
30 |
+
required=True,
|
31 |
+
type=str)
|
32 |
+
args = parser.parse_args()
|
33 |
+
return args
|
34 |
+
|
35 |
+
classes = ('no_trunk', 'trunk')
|
36 |
+
|
37 |
+
test_transforms = A.Compose(
|
38 |
+
[
|
39 |
+
A.SmallestMaxSize(max_size=350),
|
40 |
+
A.CenterCrop(height=256, width=256),
|
41 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
42 |
+
ToTensorV2(),
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
def main():
|
47 |
+
args = parse_args()
|
48 |
+
assert os.path.exists(args.input)
|
49 |
+
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")
|
50 |
+
|
51 |
+
model = models.resnet50(pretrained=True)
|
52 |
+
model.fc = nn.Sequential(
|
53 |
+
nn.Dropout(0.5),
|
54 |
+
nn.Linear(model.fc.in_features, 2)
|
55 |
+
)
|
56 |
+
|
57 |
+
state_dict = torch.load('./result/best_model.pth')
|
58 |
+
model.load_state_dict(state_dict)
|
59 |
+
|
60 |
+
for _, p in model.named_parameters():
|
61 |
+
p.requires_grad = False
|
62 |
+
|
63 |
+
model.to(device)
|
64 |
+
model.eval()
|
65 |
+
|
66 |
+
test_transforms = A.Compose(
|
67 |
+
[
|
68 |
+
A.SmallestMaxSize(max_size=350),
|
69 |
+
A.CenterCrop(height=256, width=256),
|
70 |
+
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
71 |
+
ToTensorV2(),
|
72 |
+
]
|
73 |
+
)
|
74 |
+
|
75 |
+
image = cv2.imread(args.input)
|
76 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
77 |
+
image = test_transforms(image=image)["image"]
|
78 |
+
image = torch.unsqueeze(image, 0).to(device)
|
79 |
+
|
80 |
+
output = model(image)
|
81 |
+
_, preds = output.max(1)
|
82 |
+
|
83 |
+
input_cls = 'trunk' if 't_' in args.input else 'no_trunk'
|
84 |
+
|
85 |
+
print("input: %s \n" %(input_cls))
|
86 |
+
print("output: %s" %(classes[preds.item()]))
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|
utils.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def mic_acc_cal(preds, labels):
|
5 |
+
if isinstance(labels, tuple):
|
6 |
+
assert len(labels) == 3
|
7 |
+
targets_a, targets_b, lam = labels
|
8 |
+
acc_mic_top1 = (lam * preds.eq(targets_a.data).cpu().sum().float() \
|
9 |
+
+ (1 - lam) * preds.eq(targets_b.data).cpu().sum().float()) / len(preds)
|
10 |
+
else:
|
11 |
+
acc_mic_top1 = (preds == labels).sum().item() / len(labels)
|
12 |
+
return acc_mic_top1
|