Spaces:
Build error
Build error
import torch | |
import base64 | |
import urllib.request | |
import gradio as gr | |
from io import BytesIO | |
from PIL import Image | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts import build_finetuning_prompt | |
from olmocr.prompts.anchor import get_anchor_text | |
# Initialize the model | |
model = Qwen2VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16).eval() | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Function to process PDF and generate text | |
def process_pdf(pdf_file): | |
pdf_filename = pdf_file.name | |
image_base64 = render_pdf_to_base64png(pdf_filename, 1, target_longest_image_dim=1024) | |
anchor_text = get_anchor_text(pdf_filename, 1, pdf_engine="pdfreport", target_length=4000) | |
prompt = build_finetuning_prompt(anchor_text) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
main_image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
inputs = processor( | |
text=[text], | |
images=[main_image], | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = {key: value.to(device) for (key, value) in inputs.items()} | |
output = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=1500, | |
num_return_sequences=1, | |
do_sample=True, | |
) | |
prompt_length = inputs["input_ids"].shape[1] | |
new_tokens = output[:, prompt_length:] | |
text_output = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
return text_output[0] | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=process_pdf, | |
inputs=gr.File(label="Upload PDF"), | |
outputs=gr.Textbox(label="Extracted Text"), | |
title="PDF Text Extractor", | |
description="Upload a PDF file and extract text using Qwen2-VL-7B-Instruct." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() |