Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import base64
|
3 |
+
import urllib.request
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
9 |
+
|
10 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png
|
11 |
+
from olmocr.prompts import build_finetuning_prompt
|
12 |
+
from olmocr.prompts.anchor import get_anchor_text
|
13 |
+
|
14 |
+
# Initialize the model
|
15 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16).eval()
|
16 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model.to(device)
|
19 |
+
|
20 |
+
# Function to process PDF and generate text
|
21 |
+
def process_pdf(pdf_file):
|
22 |
+
pdf_filename = pdf_file.name
|
23 |
+
image_base64 = render_pdf_to_base64png(pdf_filename, 1, target_longest_image_dim=1024)
|
24 |
+
anchor_text = get_anchor_text(pdf_filename, 1, pdf_engine="pdfreport", target_length=4000)
|
25 |
+
prompt = build_finetuning_prompt(anchor_text)
|
26 |
+
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{"type": "text", "text": prompt},
|
32 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
|
33 |
+
],
|
34 |
+
}
|
35 |
+
]
|
36 |
+
|
37 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
38 |
+
main_image = Image.open(BytesIO(base64.b64decode(image_base64)))
|
39 |
+
|
40 |
+
inputs = processor(
|
41 |
+
text=[text],
|
42 |
+
images=[main_image],
|
43 |
+
padding=True,
|
44 |
+
return_tensors="pt",
|
45 |
+
)
|
46 |
+
inputs = {key: value.to(device) for (key, value) in inputs.items()}
|
47 |
+
|
48 |
+
output = model.generate(
|
49 |
+
**inputs,
|
50 |
+
temperature=0.8,
|
51 |
+
max_new_tokens=1500,
|
52 |
+
num_return_sequences=1,
|
53 |
+
do_sample=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
prompt_length = inputs["input_ids"].shape[1]
|
57 |
+
new_tokens = output[:, prompt_length:]
|
58 |
+
text_output = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
|
59 |
+
|
60 |
+
return text_output[0]
|
61 |
+
|
62 |
+
# Create Gradio Interface
|
63 |
+
iface = gr.Interface(
|
64 |
+
fn=process_pdf,
|
65 |
+
inputs=gr.File(label="Upload PDF"),
|
66 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
67 |
+
title="PDF Text Extractor",
|
68 |
+
description="Upload a PDF file and extract text using Qwen2-VL-7B-Instruct."
|
69 |
+
)
|
70 |
+
|
71 |
+
# Launch the Gradio app
|
72 |
+
if __name__ == "__main__":
|
73 |
+
iface.launch()
|