File size: 15,720 Bytes
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
6aefb86
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f06df
 
 
b41aa9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import torch
import numpy as np
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModel
import time
import re

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True, 
                                  torch_dtype=torch.bfloat16).to(device)

# Constants
MASK_TOKEN = "[MASK]"
MASK_ID = 126336  # The token ID of [MASK] in LLaDA

def parse_constraints(constraints_text):
    """Parse constraints in format: 'position:word, position:word, ...'"""
    constraints = {}
    if not constraints_text:
        return constraints
        
    parts = constraints_text.split(',')
    for part in parts:
        if ':' not in part:
            continue
        pos_str, word = part.split(':', 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip()
            if word and pos >= 0:
                constraints[pos] = word
        except ValueError:
            continue
    
    return constraints

def format_chat_history(history):
    """
    Format chat history for the LLaDA model
    
    Args:
        history: List of [user_message, assistant_message] pairs
        
    Returns:
        Formatted conversation for the model
    """
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:  # Skip if None (for the latest user message)
            messages.append({"role": "assistant", "content": assistant_msg})
    
    return messages

@spaces.GPU
def generate_response_with_visualization(model, tokenizer, device, messages, gen_length=64, steps=32, constraints=None):
    """
    Generate text with LLaDA model with visualization of the denoising process
    
    Args:
        messages: List of message dictionaries with 'role' and 'content'
        
    Returns:
        List of visualization states showing the progression and final text
    """
    
    # Process constraints
    if constraints is None:
        constraints = {}
        
    # Convert any string constraints to token IDs
    processed_constraints = {}
    for pos, word in constraints.items():
        tokens = tokenizer.encode(" " + word, add_special_tokens=False)
        for i, token_id in enumerate(tokens):
            processed_constraints[pos + i] = token_id
    
    # Prepare the prompt using chat template
    chat_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    input_ids = tokenizer(chat_input)['input_ids']
    input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
    
    # For generation
    prompt_length = input_ids.shape[1]
    
    # Initialize the sequence with masks for the response part
    x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
    x[:, :prompt_length] = input_ids.clone()
    
    # Initialize visualization states for just the response part
    visualization_states = []
    
    # Add initial state (all masked) - only for the response part
    initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
    visualization_states.append(initial_state)
    
    # Apply constraints to the initial state
    for pos, token_id in processed_constraints.items():
        absolute_pos = prompt_length + pos
        if absolute_pos < x.shape[1]:
            x[:, absolute_pos] = token_id
    
    # Calculate timesteps
    timesteps = torch.linspace(1.0, 0.0, steps + 1)[:-1]
    
    # Keep track of already revealed tokens
    revealed_tokens = torch.zeros(1, gen_length, dtype=torch.bool).to(device)
    
    for step, t in enumerate(timesteps):
        # Current t to next t
        s = t - 1.0 / steps if step < steps - 1 else 0
        
        # Get all mask positions in the current sequence
        mask_indices = (x == MASK_ID)
        
        # Skip if no masks
        if not mask_indices.any():
            break
            
        # Get logits from the model
        logits = model(x).logits
        
        # Get the top predictions
        x0 = torch.argmax(logits, dim=-1)
        
        # Get probabilities for visualization
        probs = torch.softmax(logits, dim=-1)
        top_probs = torch.max(probs, dim=-1)[0]
        
        # Apply the predictions where we have masks
        x_old = x.clone()
        x = torch.where(mask_indices, x0, x)
        
        # Calculate how many tokens should remain masked at next step
        total_len = gen_length
        current_t_value = float(t)
        next_t_value = float(s)
        
        # Linear schedule: t=1 → all masked, t=0 → none masked
        current_masks_expected = int(current_t_value * total_len)
        next_masks_expected = int(next_t_value * total_len)
        
        # How many to unmask in this step
        tokens_to_unmask = current_masks_expected - next_masks_expected
        
        if tokens_to_unmask > 0 and mask_indices.any():
            # Get confidence scores for currently masked tokens
            confidence_scores = top_probs[mask_indices]
            
            # Sort confidence scores
            sorted_indices = torch.argsort(confidence_scores, descending=True)
            
            # Select which tokens to keep masked (the lowest confidence ones)
            indices_to_remask = sorted_indices[tokens_to_unmask:]
            
            # Get the actual indices in the sequence
            mask_positions = torch.where(mask_indices)[1]
            positions_to_remask = mask_positions[indices_to_remask]
            
            # Remask these positions
            x[:, positions_to_remask] = MASK_ID
        
        # Ensure constraints are maintained
        for pos, token_id in processed_constraints.items():
            absolute_pos = prompt_length + pos
            if absolute_pos < x.shape[1]:
                x[:, absolute_pos] = token_id
        
        # Create visualization state ONLY for the response part
        current_state = []
        
        # Update which tokens are newly revealed in this step
        for i in range(gen_length):
            pos = prompt_length + i  # Absolute position in the sequence
            
            if x[0, pos] == MASK_ID:
                # Still masked
                current_state.append((MASK_TOKEN, "#444444"))  # Dark gray for masks
                
            elif x_old[0, pos] == MASK_ID:
                # Newly revealed in this step
                token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
                confidence = float(top_probs[0, pos].cpu())
                
                # Color based on confidence: red (low) to green (high)
                if confidence < 0.3:
                    color = "#FF6666"  # Light red
                elif confidence < 0.7:
                    color = "#FFAA33"  # Orange
                else:
                    color = "#66CC66"  # Light green
                    
                current_state.append((token, color))
                revealed_tokens[0, i] = True
                
            else:
                # Previously revealed
                token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
                current_state.append((token, "#6699CC"))  # Light blue
        
        visualization_states.append(current_state)
    
    # Extract final text (just the assistant's response)
    response_tokens = x[0, prompt_length:]
    response_text = tokenizer.decode(response_tokens, skip_special_tokens=True)
    
    # Clean the response text
    final_text = tokenizer.decode(response_tokens, 
                                 skip_special_tokens=True,
                                 clean_up_tokenization_spaces=True)
    
    return visualization_states, final_text

css = '''
.category-legend{display:none}
'''
def create_chatbot_demo():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("# LLaDA - Large Language Diffusion Model demo")
        gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
        
        # STATE MANAGEMENT - IMPORTANT
        # We use a dedicated state to track the full conversation history
        chat_history = gr.State([])
        
        # UI COMPONENTS
        # Chatbot for displaying messages
        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(label="Conversation", height=500)
                
                # Message input
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message", 
                            placeholder="Type your message here...",
                            show_label=False
                        )
                        send_btn = gr.Button("Send")
                
                constraints_input = gr.Textbox(
                    label="Word Constraints", 
                    info="This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time', would be: '0:Once, 5:upon, 10:time",
                    placeholder="0:Once, 5:upon, 10:time",
                    value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=False,
                    show_legend=True,
                )
        # Visualization and response components
        with gr.Accordion("Generation Settings", open=False):
            with gr.Row():
                gen_length = gr.Slider(
                    minimum=16, maximum=128, value=64, step=8,
                    label="Generation Length"
                )
                steps = gr.Slider(
                    minimum=8, maximum=64, value=32, step=4,
                    label="Denoising Steps"
                )
            
            
            visualization_delay = gr.Slider(
                minimum=0.0, maximum=1.0, value=0.1, step=0.1, visible=False,
                label="Visualization Delay (seconds)"
            )
        
        # Current response text box
        current_response = gr.Textbox(
            label="Current Response",
            placeholder="The assistant's response will appear here...",
            lines=3,
            visible=False
        )
        
        # Clear button
        clear_btn = gr.Button("Clear Conversation")
        
        # HELPER FUNCTIONS
        def add_message(history, message, response):
            """Add a message pair to the history and return the updated history"""
            history = history.copy()
            history.append([message, response])
            return history
            
        def user_message_submitted(message, history, gen_length, steps, constraints, delay):
            """Process a submitted user message"""
            # Skip empty messages
            if not message.strip():
                # Return current state unchanged
                history_for_display = history.copy()
                return history, history_for_display, "", [], ""
                
            # Add user message to history
            history = add_message(history, message, None)
            
            # Format for display - temporarily show user message with empty response
            history_for_display = history.copy()
            
            # Clear the input
            message_out = ""
            
            # Return immediately to update UI with user message
            return history, history_for_display, message_out, [], ""
            
        def bot_response(history, gen_length, steps, constraints, delay):
            """Generate bot response for the latest message"""
            if not history:
                return history, [], ""
                
            # Get the last user message
            last_user_message = history[-1][0]
            
            try:
                # Format all messages except the last one (which has no response yet)
                messages = format_chat_history(history[:-1])
                
                # Add the last user message
                messages.append({"role": "user", "content": last_user_message})
                
                # Parse constraints
                parsed_constraints = parse_constraints(constraints)
                
                # Generate response with visualization
                vis_states, response_text = generate_response_with_visualization(
                    model, tokenizer, device, 
                    messages, 
                    gen_length=gen_length, 
                    steps=steps,
                    constraints=parsed_constraints
                )
                
                # Update history with the assistant's response
                history[-1][1] = response_text
                
                # Return the initial state immediately
                yield history, vis_states[0], response_text
                
                # Then animate through visualization states
                for state in vis_states[1:]:
                    time.sleep(delay)
                    yield history, state, response_text
                    
            except Exception as e:
                error_msg = f"Error: {str(e)}"
                print(error_msg)
                
                # Show error in visualization
                error_vis = [(error_msg, "red")]
                
                # Don't update history with error
                yield history, error_vis, error_msg
        
        def clear_conversation():
            """Clear the conversation history"""
            return [], [], "", []
        
        # EVENT HANDLERS
        
        # Clear button handler
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[chat_history, chatbot_ui, current_response, output_vis]
        )
        
        # User message submission flow (2-step process)
        # Step 1: Add user message to history and update UI
        msg_submit = user_input.submit(
            fn=user_message_submitted,
            inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
        )
        
        # Also connect the send button
        send_click = send_btn.click(
            fn=user_message_submitted,
            inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
        )
        
        # Step 2: Generate bot response
        # This happens after the user message is displayed
        msg_submit.then(
            fn=bot_response,
            inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chatbot_ui, output_vis, current_response]
        )
        
        send_click.then(
            fn=bot_response,
            inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
            outputs=[chatbot_ui, output_vis, current_response]
        )
        
    return demo

# Launch the demo
if __name__ == "__main__":
    demo = create_chatbot_demo()
    demo.queue().launch(share=True)