Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import time
|
7 |
+
import re
|
8 |
+
|
9 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
+
print(f"Using device: {device}")
|
11 |
+
|
12 |
+
# Load model and tokenizer
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True)
|
14 |
+
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True,
|
15 |
+
torch_dtype=torch.bfloat16).to(device).eval()
|
16 |
+
|
17 |
+
# Constants
|
18 |
+
MASK_TOKEN = "[MASK]"
|
19 |
+
MASK_ID = 126336 # The token ID of [MASK] in LLaDA
|
20 |
+
|
21 |
+
def parse_constraints(constraints_text):
|
22 |
+
"""Parse constraints in format: 'position:word, position:word, ...'"""
|
23 |
+
constraints = {}
|
24 |
+
if not constraints_text:
|
25 |
+
return constraints
|
26 |
+
|
27 |
+
parts = constraints_text.split(',')
|
28 |
+
for part in parts:
|
29 |
+
if ':' not in part:
|
30 |
+
continue
|
31 |
+
pos_str, word = part.split(':', 1)
|
32 |
+
try:
|
33 |
+
pos = int(pos_str.strip())
|
34 |
+
word = word.strip()
|
35 |
+
if word and pos >= 0:
|
36 |
+
constraints[pos] = word
|
37 |
+
except ValueError:
|
38 |
+
continue
|
39 |
+
|
40 |
+
return constraints
|
41 |
+
|
42 |
+
def format_chat_history(history):
|
43 |
+
"""
|
44 |
+
Format chat history for the LLaDA model
|
45 |
+
|
46 |
+
Args:
|
47 |
+
history: List of [user_message, assistant_message] pairs
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
Formatted conversation for the model
|
51 |
+
"""
|
52 |
+
messages = []
|
53 |
+
for user_msg, assistant_msg in history:
|
54 |
+
messages.append({"role": "user", "content": user_msg})
|
55 |
+
if assistant_msg: # Skip if None (for the latest user message)
|
56 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
57 |
+
|
58 |
+
return messages
|
59 |
+
|
60 |
+
@spaces.GPU
|
61 |
+
def generate_response_with_visualization(model, tokenizer, device, messages, gen_length=64, steps=32, constraints=None):
|
62 |
+
"""
|
63 |
+
Generate text with LLaDA model with visualization of the denoising process
|
64 |
+
|
65 |
+
Args:
|
66 |
+
messages: List of message dictionaries with 'role' and 'content'
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
List of visualization states showing the progression and final text
|
70 |
+
"""
|
71 |
+
# Set random seed for reproducibility
|
72 |
+
torch.manual_seed(42)
|
73 |
+
|
74 |
+
# Process constraints
|
75 |
+
if constraints is None:
|
76 |
+
constraints = {}
|
77 |
+
|
78 |
+
# Convert any string constraints to token IDs
|
79 |
+
processed_constraints = {}
|
80 |
+
for pos, word in constraints.items():
|
81 |
+
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
|
82 |
+
for i, token_id in enumerate(tokens):
|
83 |
+
processed_constraints[pos + i] = token_id
|
84 |
+
|
85 |
+
# Prepare the prompt using chat template
|
86 |
+
chat_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
87 |
+
input_ids = tokenizer(chat_input)['input_ids']
|
88 |
+
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
|
89 |
+
|
90 |
+
# For generation
|
91 |
+
prompt_length = input_ids.shape[1]
|
92 |
+
|
93 |
+
# Initialize the sequence with masks for the response part
|
94 |
+
x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
|
95 |
+
x[:, :prompt_length] = input_ids.clone()
|
96 |
+
|
97 |
+
# Initialize visualization states for just the response part
|
98 |
+
visualization_states = []
|
99 |
+
|
100 |
+
# Add initial state (all masked) - only for the response part
|
101 |
+
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
|
102 |
+
visualization_states.append(initial_state)
|
103 |
+
|
104 |
+
# Apply constraints to the initial state
|
105 |
+
for pos, token_id in processed_constraints.items():
|
106 |
+
absolute_pos = prompt_length + pos
|
107 |
+
if absolute_pos < x.shape[1]:
|
108 |
+
x[:, absolute_pos] = token_id
|
109 |
+
|
110 |
+
# Calculate timesteps
|
111 |
+
timesteps = torch.linspace(1.0, 0.0, steps + 1)[:-1]
|
112 |
+
|
113 |
+
# Keep track of already revealed tokens
|
114 |
+
revealed_tokens = torch.zeros(1, gen_length, dtype=torch.bool).to(device)
|
115 |
+
|
116 |
+
for step, t in enumerate(timesteps):
|
117 |
+
# Current t to next t
|
118 |
+
s = t - 1.0 / steps if step < steps - 1 else 0
|
119 |
+
|
120 |
+
# Get all mask positions in the current sequence
|
121 |
+
mask_indices = (x == MASK_ID)
|
122 |
+
|
123 |
+
# Skip if no masks
|
124 |
+
if not mask_indices.any():
|
125 |
+
break
|
126 |
+
|
127 |
+
# Get logits from the model
|
128 |
+
logits = model(x).logits
|
129 |
+
|
130 |
+
# Get the top predictions
|
131 |
+
x0 = torch.argmax(logits, dim=-1)
|
132 |
+
|
133 |
+
# Get probabilities for visualization
|
134 |
+
probs = torch.softmax(logits, dim=-1)
|
135 |
+
top_probs = torch.max(probs, dim=-1)[0]
|
136 |
+
|
137 |
+
# Apply the predictions where we have masks
|
138 |
+
x_old = x.clone()
|
139 |
+
x = torch.where(mask_indices, x0, x)
|
140 |
+
|
141 |
+
# Calculate how many tokens should remain masked at next step
|
142 |
+
total_len = gen_length
|
143 |
+
current_t_value = float(t)
|
144 |
+
next_t_value = float(s)
|
145 |
+
|
146 |
+
# Linear schedule: t=1 → all masked, t=0 → none masked
|
147 |
+
current_masks_expected = int(current_t_value * total_len)
|
148 |
+
next_masks_expected = int(next_t_value * total_len)
|
149 |
+
|
150 |
+
# How many to unmask in this step
|
151 |
+
tokens_to_unmask = current_masks_expected - next_masks_expected
|
152 |
+
|
153 |
+
if tokens_to_unmask > 0 and mask_indices.any():
|
154 |
+
# Get confidence scores for currently masked tokens
|
155 |
+
confidence_scores = top_probs[mask_indices]
|
156 |
+
|
157 |
+
# Sort confidence scores
|
158 |
+
sorted_indices = torch.argsort(confidence_scores, descending=True)
|
159 |
+
|
160 |
+
# Select which tokens to keep masked (the lowest confidence ones)
|
161 |
+
indices_to_remask = sorted_indices[tokens_to_unmask:]
|
162 |
+
|
163 |
+
# Get the actual indices in the sequence
|
164 |
+
mask_positions = torch.where(mask_indices)[1]
|
165 |
+
positions_to_remask = mask_positions[indices_to_remask]
|
166 |
+
|
167 |
+
# Remask these positions
|
168 |
+
x[:, positions_to_remask] = MASK_ID
|
169 |
+
|
170 |
+
# Ensure constraints are maintained
|
171 |
+
for pos, token_id in processed_constraints.items():
|
172 |
+
absolute_pos = prompt_length + pos
|
173 |
+
if absolute_pos < x.shape[1]:
|
174 |
+
x[:, absolute_pos] = token_id
|
175 |
+
|
176 |
+
# Create visualization state ONLY for the response part
|
177 |
+
current_state = []
|
178 |
+
|
179 |
+
# Update which tokens are newly revealed in this step
|
180 |
+
for i in range(gen_length):
|
181 |
+
pos = prompt_length + i # Absolute position in the sequence
|
182 |
+
|
183 |
+
if x[0, pos] == MASK_ID:
|
184 |
+
# Still masked
|
185 |
+
current_state.append((MASK_TOKEN, "#444444")) # Dark gray for masks
|
186 |
+
|
187 |
+
elif x_old[0, pos] == MASK_ID:
|
188 |
+
# Newly revealed in this step
|
189 |
+
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
|
190 |
+
confidence = float(top_probs[0, pos].cpu())
|
191 |
+
|
192 |
+
# Color based on confidence: red (low) to green (high)
|
193 |
+
if confidence < 0.3:
|
194 |
+
color = "#FF6666" # Light red
|
195 |
+
elif confidence < 0.7:
|
196 |
+
color = "#FFAA33" # Orange
|
197 |
+
else:
|
198 |
+
color = "#66CC66" # Light green
|
199 |
+
|
200 |
+
current_state.append((token, color))
|
201 |
+
revealed_tokens[0, i] = True
|
202 |
+
|
203 |
+
else:
|
204 |
+
# Previously revealed
|
205 |
+
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
|
206 |
+
current_state.append((token, "#6699CC")) # Light blue
|
207 |
+
|
208 |
+
visualization_states.append(current_state)
|
209 |
+
|
210 |
+
# Extract final text (just the assistant's response)
|
211 |
+
response_tokens = x[0, prompt_length:]
|
212 |
+
response_text = tokenizer.decode(response_tokens, skip_special_tokens=True)
|
213 |
+
|
214 |
+
# Clean the response text
|
215 |
+
final_text = clean_output_text(response_text)
|
216 |
+
|
217 |
+
return visualization_states, final_text
|
218 |
+
|
219 |
+
def clean_output_text(text):
|
220 |
+
"""Clean the output text to remove special tokens and fix spacing"""
|
221 |
+
# Remove any remaining [MASK] tokens
|
222 |
+
text = text.replace(MASK_TOKEN, "")
|
223 |
+
|
224 |
+
# Fix common spacing issues with tokenization
|
225 |
+
text = re.sub(r'\s+', ' ', text) # Remove multiple spaces
|
226 |
+
text = re.sub(r' \.', '.', text) # Fix spacing before periods
|
227 |
+
text = re.sub(r' ,', ',', text) # Fix spacing before commas
|
228 |
+
text = re.sub(r' !', '!', text) # Fix spacing before exclamation marks
|
229 |
+
text = re.sub(r' \?', '?', text) # Fix spacing before question marks
|
230 |
+
text = re.sub(r' ;', ';', text) # Fix spacing before semicolons
|
231 |
+
text = re.sub(r' :', ':', text) # Fix spacing before colons
|
232 |
+
|
233 |
+
# Fix beginning and end spacing
|
234 |
+
text = text.strip()
|
235 |
+
|
236 |
+
return text
|
237 |
+
|
238 |
+
css = '''
|
239 |
+
.category-legend{display:none}
|
240 |
+
'''
|
241 |
+
def create_chatbot_demo():
|
242 |
+
with gr.Blocks(css=css) as demo:
|
243 |
+
gr.Markdown("# LLaDA - Large Language Diffusion Model demo")
|
244 |
+
gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
|
245 |
+
|
246 |
+
# STATE MANAGEMENT - IMPORTANT
|
247 |
+
# We use a dedicated state to track the full conversation history
|
248 |
+
chat_history = gr.State([])
|
249 |
+
|
250 |
+
# UI COMPONENTS
|
251 |
+
# Chatbot for displaying messages
|
252 |
+
with gr.Row():
|
253 |
+
with gr.Column(scale=3):
|
254 |
+
chatbot_ui = gr.Chatbot(label="Conversation", height=500)
|
255 |
+
|
256 |
+
# Message input
|
257 |
+
with gr.Group():
|
258 |
+
with gr.Row():
|
259 |
+
user_input = gr.Textbox(
|
260 |
+
label="Your Message",
|
261 |
+
placeholder="Type your message here...",
|
262 |
+
show_label=False
|
263 |
+
)
|
264 |
+
send_btn = gr.Button("Send")
|
265 |
+
|
266 |
+
constraints_input = gr.Textbox(
|
267 |
+
label="Word Constraints",
|
268 |
+
info="This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time', would be: '0:Once, 5:upon, 10:time",
|
269 |
+
placeholder="0:Once, 5:upon, 10:time",
|
270 |
+
value=""
|
271 |
+
)
|
272 |
+
with gr.Column(scale=2):
|
273 |
+
output_vis = gr.HighlightedText(
|
274 |
+
label="Denoising Process Visualization",
|
275 |
+
combine_adjacent=False,
|
276 |
+
show_legend=True,
|
277 |
+
)
|
278 |
+
# Visualization and response components
|
279 |
+
with gr.Accordion("Generation Settings", open=False):
|
280 |
+
with gr.Row():
|
281 |
+
gen_length = gr.Slider(
|
282 |
+
minimum=16, maximum=128, value=64, step=8,
|
283 |
+
label="Generation Length"
|
284 |
+
)
|
285 |
+
steps = gr.Slider(
|
286 |
+
minimum=8, maximum=64, value=32, step=4,
|
287 |
+
label="Denoising Steps"
|
288 |
+
)
|
289 |
+
|
290 |
+
|
291 |
+
visualization_delay = gr.Slider(
|
292 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.1, visible=False,
|
293 |
+
label="Visualization Delay (seconds)"
|
294 |
+
)
|
295 |
+
|
296 |
+
# Current response text box
|
297 |
+
current_response = gr.Textbox(
|
298 |
+
label="Current Response",
|
299 |
+
placeholder="The assistant's response will appear here...",
|
300 |
+
lines=3,
|
301 |
+
visible=False
|
302 |
+
)
|
303 |
+
|
304 |
+
# Clear button
|
305 |
+
clear_btn = gr.Button("Clear Conversation")
|
306 |
+
|
307 |
+
# Example inputs
|
308 |
+
gr.Examples(
|
309 |
+
[
|
310 |
+
["Tell me a short joke", 64, 32, ""],
|
311 |
+
["Write a short story", 64, 32, "0:Once, 5:upon, 10:time"],
|
312 |
+
["Explain quantum computing", 64, 32, ""],
|
313 |
+
],
|
314 |
+
[user_input, gen_length, steps, constraints_input],
|
315 |
+
)
|
316 |
+
|
317 |
+
# HELPER FUNCTIONS
|
318 |
+
def add_message(history, message, response):
|
319 |
+
"""Add a message pair to the history and return the updated history"""
|
320 |
+
history = history.copy()
|
321 |
+
history.append([message, response])
|
322 |
+
return history
|
323 |
+
|
324 |
+
def user_message_submitted(message, history, gen_length, steps, constraints, delay):
|
325 |
+
"""Process a submitted user message"""
|
326 |
+
# Skip empty messages
|
327 |
+
if not message.strip():
|
328 |
+
# Return current state unchanged
|
329 |
+
history_for_display = history.copy()
|
330 |
+
return history, history_for_display, "", [], ""
|
331 |
+
|
332 |
+
# Add user message to history
|
333 |
+
history = add_message(history, message, None)
|
334 |
+
|
335 |
+
# Format for display - temporarily show user message with empty response
|
336 |
+
history_for_display = history.copy()
|
337 |
+
|
338 |
+
# Clear the input
|
339 |
+
message_out = ""
|
340 |
+
|
341 |
+
# Return immediately to update UI with user message
|
342 |
+
return history, history_for_display, message_out, [], ""
|
343 |
+
|
344 |
+
def bot_response(history, gen_length, steps, constraints, delay):
|
345 |
+
"""Generate bot response for the latest message"""
|
346 |
+
if not history:
|
347 |
+
return history, [], ""
|
348 |
+
|
349 |
+
# Get the last user message
|
350 |
+
last_user_message = history[-1][0]
|
351 |
+
|
352 |
+
try:
|
353 |
+
# Format all messages except the last one (which has no response yet)
|
354 |
+
messages = format_chat_history(history[:-1])
|
355 |
+
|
356 |
+
# Add the last user message
|
357 |
+
messages.append({"role": "user", "content": last_user_message})
|
358 |
+
|
359 |
+
# Parse constraints
|
360 |
+
parsed_constraints = parse_constraints(constraints)
|
361 |
+
|
362 |
+
# Generate response with visualization
|
363 |
+
vis_states, response_text = generate_response_with_visualization(
|
364 |
+
model, tokenizer, device,
|
365 |
+
messages,
|
366 |
+
gen_length=gen_length,
|
367 |
+
steps=steps,
|
368 |
+
constraints=parsed_constraints
|
369 |
+
)
|
370 |
+
|
371 |
+
# Update history with the assistant's response
|
372 |
+
history[-1][1] = response_text
|
373 |
+
|
374 |
+
# Return the initial state immediately
|
375 |
+
yield history, vis_states[0], response_text
|
376 |
+
|
377 |
+
# Then animate through visualization states
|
378 |
+
for state in vis_states[1:]:
|
379 |
+
time.sleep(delay)
|
380 |
+
yield history, state, response_text
|
381 |
+
|
382 |
+
except Exception as e:
|
383 |
+
error_msg = f"Error: {str(e)}"
|
384 |
+
print(error_msg)
|
385 |
+
|
386 |
+
# Show error in visualization
|
387 |
+
error_vis = [(error_msg, "red")]
|
388 |
+
|
389 |
+
# Don't update history with error
|
390 |
+
yield history, error_vis, error_msg
|
391 |
+
|
392 |
+
def clear_conversation():
|
393 |
+
"""Clear the conversation history"""
|
394 |
+
return [], [], "", []
|
395 |
+
|
396 |
+
# EVENT HANDLERS
|
397 |
+
|
398 |
+
# Clear button handler
|
399 |
+
clear_btn.click(
|
400 |
+
fn=clear_conversation,
|
401 |
+
inputs=[],
|
402 |
+
outputs=[chat_history, chatbot_ui, current_response, output_vis]
|
403 |
+
)
|
404 |
+
|
405 |
+
# User message submission flow (2-step process)
|
406 |
+
# Step 1: Add user message to history and update UI
|
407 |
+
msg_submit = user_input.submit(
|
408 |
+
fn=user_message_submitted,
|
409 |
+
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
|
410 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
|
411 |
+
)
|
412 |
+
|
413 |
+
# Also connect the send button
|
414 |
+
send_click = send_btn.click(
|
415 |
+
fn=user_message_submitted,
|
416 |
+
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
|
417 |
+
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
|
418 |
+
)
|
419 |
+
|
420 |
+
# Step 2: Generate bot response
|
421 |
+
# This happens after the user message is displayed
|
422 |
+
msg_submit.then(
|
423 |
+
fn=bot_response,
|
424 |
+
inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
|
425 |
+
outputs=[chatbot_ui, output_vis, current_response]
|
426 |
+
)
|
427 |
+
|
428 |
+
send_click.then(
|
429 |
+
fn=bot_response,
|
430 |
+
inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
|
431 |
+
outputs=[chatbot_ui, output_vis, current_response]
|
432 |
+
)
|
433 |
+
|
434 |
+
return demo
|
435 |
+
|
436 |
+
# Launch the demo
|
437 |
+
if __name__ == "__main__":
|
438 |
+
demo = create_chatbot_demo()
|
439 |
+
demo.queue().launch(share=True)
|