Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,48 @@
|
|
1 |
from typing import Optional
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
|
|
8 |
import base64, os
|
9 |
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
10 |
import torch
|
11 |
from PIL import Image
|
12 |
-
import ast
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
21 |
-
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path=
|
22 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
23 |
|
24 |
MARKDOWN = """
|
25 |
-
# OmniParser for Pure Vision Based General GUI Agent
|
26 |
<div>
|
27 |
<a href="https://arxiv.org/pdf/2408.00203">
|
28 |
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
|
29 |
</a>
|
30 |
</div>
|
31 |
-
|
32 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
33 |
"""
|
34 |
|
35 |
DEVICE = torch.device('cuda')
|
36 |
|
|
|
|
|
|
|
37 |
def process(
|
38 |
image_input,
|
39 |
box_threshold,
|
@@ -42,52 +51,45 @@ def process(
|
|
42 |
imgsz
|
43 |
) -> Optional[Image.Image]:
|
44 |
|
45 |
-
image_save_path = 'imgs/saved_image_demo.png'
|
46 |
-
image_input.save(image_save_path)
|
47 |
-
image = Image.open(image_save_path)
|
48 |
-
box_overlay_ratio =
|
49 |
draw_bbox_config = {
|
50 |
'text_scale': 0.8 * box_overlay_ratio,
|
51 |
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
52 |
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
53 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
54 |
}
|
|
|
55 |
|
56 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
57 |
-
text,
|
58 |
-
|
59 |
-
# Correctly handle ocr_bbox and ocr_text
|
60 |
-
if ocr_bbox_input is None or not ocr_bbox_input:
|
61 |
-
ocr_bbox = []
|
62 |
-
ocr_text = []
|
63 |
-
else:
|
64 |
-
ocr_bbox = []
|
65 |
-
for box_str in ocr_bbox_input:
|
66 |
-
try:
|
67 |
-
# 使用 eval(),但要非常小心!
|
68 |
-
box = eval(box_str) # 转换为元组
|
69 |
-
ocr_bbox.append(box)
|
70 |
-
except (SyntaxError, NameError, TypeError, ValueError):
|
71 |
-
print(f"警告:无法解析边界框字符串:{box_str}") # 打印警告信息,但继续处理其他框
|
72 |
-
continue # 跳过错误的框
|
73 |
-
ocr_text = text # 使用 check_ocr_box 返回的 text
|
74 |
-
|
75 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD=box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox, draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=ocr_text, iou_threshold=iou_threshold, imgsz=imgsz)
|
76 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
77 |
print('finish processing')
|
78 |
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
|
|
79 |
return image, str(parsed_content_list)
|
80 |
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown(MARKDOWN)
|
83 |
with gr.Row():
|
84 |
with gr.Column():
|
85 |
-
image_input_component = gr.Image(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with gr.Column():
|
92 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
93 |
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
@@ -104,4 +106,6 @@ with gr.Blocks() as demo:
|
|
104 |
outputs=[image_output_component, text_output_component]
|
105 |
)
|
106 |
|
107 |
-
demo.launch(
|
|
|
|
|
|
1 |
from typing import Optional
|
2 |
+
import spaces
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
+
|
9 |
+
|
10 |
import base64, os
|
11 |
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
12 |
import torch
|
13 |
from PIL import Image
|
|
|
14 |
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
|
17 |
+
# Define repository and local directory
|
18 |
+
repo_id = "microsoft/OmniParser-v2.0" # HF repo
|
19 |
+
local_dir = "weights" # Target local directory
|
20 |
+
|
21 |
+
# Download the entire repository
|
22 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
23 |
+
|
24 |
+
print(f"Repository downloaded to: {local_dir}")
|
25 |
+
|
26 |
|
27 |
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
|
28 |
+
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
|
29 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
30 |
|
31 |
MARKDOWN = """
|
32 |
+
# OmniParser V2 for Pure Vision Based General GUI Agent 🔥
|
33 |
<div>
|
34 |
<a href="https://arxiv.org/pdf/2408.00203">
|
35 |
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
|
36 |
</a>
|
37 |
</div>
|
|
|
38 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
39 |
"""
|
40 |
|
41 |
DEVICE = torch.device('cuda')
|
42 |
|
43 |
+
@spaces.GPU
|
44 |
+
@torch.inference_mode()
|
45 |
+
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
46 |
def process(
|
47 |
image_input,
|
48 |
box_threshold,
|
|
|
51 |
imgsz
|
52 |
) -> Optional[Image.Image]:
|
53 |
|
54 |
+
# image_save_path = 'imgs/saved_image_demo.png'
|
55 |
+
# image_input.save(image_save_path)
|
56 |
+
# image = Image.open(image_save_path)
|
57 |
+
box_overlay_ratio = image_input.size[0] / 3200
|
58 |
draw_bbox_config = {
|
59 |
'text_scale': 0.8 * box_overlay_ratio,
|
60 |
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
61 |
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
62 |
'thickness': max(int(3 * box_overlay_ratio), 1),
|
63 |
}
|
64 |
+
# import pdb; pdb.set_trace()
|
65 |
|
66 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
|
67 |
+
text, ocr_bbox = ocr_bbox_rslt
|
68 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
70 |
print('finish processing')
|
71 |
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
|
72 |
+
# parsed_content_list = str(parsed_content_list)
|
73 |
return image, str(parsed_content_list)
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
gr.Markdown(MARKDOWN)
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
+
image_input_component = gr.Image(
|
80 |
+
type='pil', label='Upload image')
|
81 |
+
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
82 |
+
box_threshold_component = gr.Slider(
|
83 |
+
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
84 |
+
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
85 |
+
iou_threshold_component = gr.Slider(
|
86 |
+
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
87 |
+
use_paddleocr_component = gr.Checkbox(
|
88 |
+
label='Use PaddleOCR', value=True)
|
89 |
+
imgsz_component = gr.Slider(
|
90 |
+
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
|
91 |
+
submit_button_component = gr.Button(
|
92 |
+
value='Submit', variant='primary')
|
93 |
with gr.Column():
|
94 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
95 |
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
|
|
|
106 |
outputs=[image_output_component, text_output_component]
|
107 |
)
|
108 |
|
109 |
+
# demo.launch(debug=False, show_error=True, share=True)
|
110 |
+
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
111 |
+
demo.queue().launch(share=False)
|