Spaces:
Running
Running
Upload 8 files
Browse files- util/__init__.py +0 -0
- util/__pycache__/__init__.cpython-311.pyc +0 -0
- util/__pycache__/box_annotator.cpython-311.pyc +0 -0
- util/__pycache__/utils.cpython-311.pyc +0 -0
- util/box_annotator.py +262 -0
- util/omniparser.py +32 -0
- util/utils - 副本.py +540 -0
- util/utils.py +540 -0
util/__init__.py
ADDED
File without changes
|
util/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (149 Bytes). View file
|
|
util/__pycache__/box_annotator.cpython-311.pyc
ADDED
Binary file (10.5 kB). View file
|
|
util/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (42.8 kB). View file
|
|
util/box_annotator.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union, Tuple
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from supervision.detection.core import Detections
|
7 |
+
from supervision.draw.color import Color, ColorPalette
|
8 |
+
|
9 |
+
|
10 |
+
class BoxAnnotator:
|
11 |
+
"""
|
12 |
+
A class for drawing bounding boxes on an image using detections provided.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
color (Union[Color, ColorPalette]): The color to draw the bounding box,
|
16 |
+
can be a single color or a color palette
|
17 |
+
thickness (int): The thickness of the bounding box lines, default is 2
|
18 |
+
text_color (Color): The color of the text on the bounding box, default is white
|
19 |
+
text_scale (float): The scale of the text on the bounding box, default is 0.5
|
20 |
+
text_thickness (int): The thickness of the text on the bounding box,
|
21 |
+
default is 1
|
22 |
+
text_padding (int): The padding around the text on the bounding box,
|
23 |
+
default is 5
|
24 |
+
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
|
30 |
+
thickness: int = 3, # 1 for seeclick 2 for mind2web and 3 for demo
|
31 |
+
text_color: Color = Color.BLACK,
|
32 |
+
text_scale: float = 0.5, # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
33 |
+
text_thickness: int = 2, #1, # 2 for demo
|
34 |
+
text_padding: int = 10,
|
35 |
+
avoid_overlap: bool = True,
|
36 |
+
):
|
37 |
+
self.color: Union[Color, ColorPalette] = color
|
38 |
+
self.thickness: int = thickness
|
39 |
+
self.text_color: Color = text_color
|
40 |
+
self.text_scale: float = text_scale
|
41 |
+
self.text_thickness: int = text_thickness
|
42 |
+
self.text_padding: int = text_padding
|
43 |
+
self.avoid_overlap: bool = avoid_overlap
|
44 |
+
|
45 |
+
def annotate(
|
46 |
+
self,
|
47 |
+
scene: np.ndarray,
|
48 |
+
detections: Detections,
|
49 |
+
labels: Optional[List[str]] = None,
|
50 |
+
skip_label: bool = False,
|
51 |
+
image_size: Optional[Tuple[int, int]] = None,
|
52 |
+
) -> np.ndarray:
|
53 |
+
"""
|
54 |
+
Draws bounding boxes on the frame using the detections provided.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
scene (np.ndarray): The image on which the bounding boxes will be drawn
|
58 |
+
detections (Detections): The detections for which the
|
59 |
+
bounding boxes will be drawn
|
60 |
+
labels (Optional[List[str]]): An optional list of labels
|
61 |
+
corresponding to each detection. If `labels` are not provided,
|
62 |
+
corresponding `class_id` will be used as label.
|
63 |
+
skip_label (bool): Is set to `True`, skips bounding box label annotation.
|
64 |
+
Returns:
|
65 |
+
np.ndarray: The image with the bounding boxes drawn on it
|
66 |
+
|
67 |
+
Example:
|
68 |
+
```python
|
69 |
+
import supervision as sv
|
70 |
+
|
71 |
+
classes = ['person', ...]
|
72 |
+
image = ...
|
73 |
+
detections = sv.Detections(...)
|
74 |
+
|
75 |
+
box_annotator = sv.BoxAnnotator()
|
76 |
+
labels = [
|
77 |
+
f"{classes[class_id]} {confidence:0.2f}"
|
78 |
+
for _, _, confidence, class_id, _ in detections
|
79 |
+
]
|
80 |
+
annotated_frame = box_annotator.annotate(
|
81 |
+
scene=image.copy(),
|
82 |
+
detections=detections,
|
83 |
+
labels=labels
|
84 |
+
)
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
88 |
+
for i in range(len(detections)):
|
89 |
+
x1, y1, x2, y2 = detections.xyxy[i].astype(int)
|
90 |
+
class_id = (
|
91 |
+
detections.class_id[i] if detections.class_id is not None else None
|
92 |
+
)
|
93 |
+
idx = class_id if class_id is not None else i
|
94 |
+
color = (
|
95 |
+
self.color.by_idx(idx)
|
96 |
+
if isinstance(self.color, ColorPalette)
|
97 |
+
else self.color
|
98 |
+
)
|
99 |
+
cv2.rectangle(
|
100 |
+
img=scene,
|
101 |
+
pt1=(x1, y1),
|
102 |
+
pt2=(x2, y2),
|
103 |
+
color=color.as_bgr(),
|
104 |
+
thickness=self.thickness,
|
105 |
+
)
|
106 |
+
if skip_label:
|
107 |
+
continue
|
108 |
+
|
109 |
+
text = (
|
110 |
+
f"{class_id}"
|
111 |
+
if (labels is None or len(detections) != len(labels))
|
112 |
+
else labels[i]
|
113 |
+
)
|
114 |
+
|
115 |
+
text_width, text_height = cv2.getTextSize(
|
116 |
+
text=text,
|
117 |
+
fontFace=font,
|
118 |
+
fontScale=self.text_scale,
|
119 |
+
thickness=self.text_thickness,
|
120 |
+
)[0]
|
121 |
+
|
122 |
+
if not self.avoid_overlap:
|
123 |
+
text_x = x1 + self.text_padding
|
124 |
+
text_y = y1 - self.text_padding
|
125 |
+
|
126 |
+
text_background_x1 = x1
|
127 |
+
text_background_y1 = y1 - 2 * self.text_padding - text_height
|
128 |
+
|
129 |
+
text_background_x2 = x1 + 2 * self.text_padding + text_width
|
130 |
+
text_background_y2 = y1
|
131 |
+
# text_x = x1 - self.text_padding - text_width
|
132 |
+
# text_y = y1 + self.text_padding + text_height
|
133 |
+
# text_background_x1 = x1 - 2 * self.text_padding - text_width
|
134 |
+
# text_background_y1 = y1
|
135 |
+
# text_background_x2 = x1
|
136 |
+
# text_background_y2 = y1 + 2 * self.text_padding + text_height
|
137 |
+
else:
|
138 |
+
text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
|
139 |
+
|
140 |
+
cv2.rectangle(
|
141 |
+
img=scene,
|
142 |
+
pt1=(text_background_x1, text_background_y1),
|
143 |
+
pt2=(text_background_x2, text_background_y2),
|
144 |
+
color=color.as_bgr(),
|
145 |
+
thickness=cv2.FILLED,
|
146 |
+
)
|
147 |
+
# import pdb; pdb.set_trace()
|
148 |
+
box_color = color.as_rgb()
|
149 |
+
luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
|
150 |
+
text_color = (0,0,0) if luminance > 160 else (255,255,255)
|
151 |
+
cv2.putText(
|
152 |
+
img=scene,
|
153 |
+
text=text,
|
154 |
+
org=(text_x, text_y),
|
155 |
+
fontFace=font,
|
156 |
+
fontScale=self.text_scale,
|
157 |
+
# color=self.text_color.as_rgb(),
|
158 |
+
color=text_color,
|
159 |
+
thickness=self.text_thickness,
|
160 |
+
lineType=cv2.LINE_AA,
|
161 |
+
)
|
162 |
+
return scene
|
163 |
+
|
164 |
+
|
165 |
+
def box_area(box):
|
166 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
167 |
+
|
168 |
+
def intersection_area(box1, box2):
|
169 |
+
x1 = max(box1[0], box2[0])
|
170 |
+
y1 = max(box1[1], box2[1])
|
171 |
+
x2 = min(box1[2], box2[2])
|
172 |
+
y2 = min(box1[3], box2[3])
|
173 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
174 |
+
|
175 |
+
def IoU(box1, box2, return_max=True):
|
176 |
+
intersection = intersection_area(box1, box2)
|
177 |
+
union = box_area(box1) + box_area(box2) - intersection
|
178 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
179 |
+
ratio1 = intersection / box_area(box1)
|
180 |
+
ratio2 = intersection / box_area(box2)
|
181 |
+
else:
|
182 |
+
ratio1, ratio2 = 0, 0
|
183 |
+
if return_max:
|
184 |
+
return max(intersection / union, ratio1, ratio2)
|
185 |
+
else:
|
186 |
+
return intersection / union
|
187 |
+
|
188 |
+
|
189 |
+
def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
|
190 |
+
""" check overlap of text and background detection box, and get_optimal_label_pos,
|
191 |
+
pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
|
192 |
+
Threshold: default to 0.3
|
193 |
+
"""
|
194 |
+
|
195 |
+
def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
|
196 |
+
is_overlap = False
|
197 |
+
for i in range(len(detections)):
|
198 |
+
detection = detections.xyxy[i].astype(int)
|
199 |
+
if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
|
200 |
+
is_overlap = True
|
201 |
+
break
|
202 |
+
# check if the text is out of the image
|
203 |
+
if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
|
204 |
+
is_overlap = True
|
205 |
+
return is_overlap
|
206 |
+
|
207 |
+
# if pos == 'top left':
|
208 |
+
text_x = x1 + text_padding
|
209 |
+
text_y = y1 - text_padding
|
210 |
+
|
211 |
+
text_background_x1 = x1
|
212 |
+
text_background_y1 = y1 - 2 * text_padding - text_height
|
213 |
+
|
214 |
+
text_background_x2 = x1 + 2 * text_padding + text_width
|
215 |
+
text_background_y2 = y1
|
216 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
217 |
+
if not is_overlap:
|
218 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
219 |
+
|
220 |
+
# elif pos == 'outer left':
|
221 |
+
text_x = x1 - text_padding - text_width
|
222 |
+
text_y = y1 + text_padding + text_height
|
223 |
+
|
224 |
+
text_background_x1 = x1 - 2 * text_padding - text_width
|
225 |
+
text_background_y1 = y1
|
226 |
+
|
227 |
+
text_background_x2 = x1
|
228 |
+
text_background_y2 = y1 + 2 * text_padding + text_height
|
229 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
230 |
+
if not is_overlap:
|
231 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
232 |
+
|
233 |
+
|
234 |
+
# elif pos == 'outer right':
|
235 |
+
text_x = x2 + text_padding
|
236 |
+
text_y = y1 + text_padding + text_height
|
237 |
+
|
238 |
+
text_background_x1 = x2
|
239 |
+
text_background_y1 = y1
|
240 |
+
|
241 |
+
text_background_x2 = x2 + 2 * text_padding + text_width
|
242 |
+
text_background_y2 = y1 + 2 * text_padding + text_height
|
243 |
+
|
244 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
245 |
+
if not is_overlap:
|
246 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
247 |
+
|
248 |
+
# elif pos == 'top right':
|
249 |
+
text_x = x2 - text_padding - text_width
|
250 |
+
text_y = y1 - text_padding
|
251 |
+
|
252 |
+
text_background_x1 = x2 - 2 * text_padding - text_width
|
253 |
+
text_background_y1 = y1 - 2 * text_padding - text_height
|
254 |
+
|
255 |
+
text_background_x2 = x2
|
256 |
+
text_background_y2 = y1
|
257 |
+
|
258 |
+
is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
|
259 |
+
if not is_overlap:
|
260 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
261 |
+
|
262 |
+
return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|
util/omniparser.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from util.utils import get_som_labeled_img, get_caption_model_processor, get_yolo_model, check_ocr_box
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
+
from typing import Dict
|
7 |
+
class Omniparser(object):
|
8 |
+
def __init__(self, config: Dict):
|
9 |
+
self.config = config
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
|
12 |
+
self.som_model = get_yolo_model(model_path=config['som_model_path'])
|
13 |
+
self.caption_model_processor = get_caption_model_processor(model_name=config['caption_model_name'], model_name_or_path=config['caption_model_path'], device=device)
|
14 |
+
print('Omniparser initialized!!!')
|
15 |
+
|
16 |
+
def parse(self, image_base64: str):
|
17 |
+
image_bytes = base64.b64decode(image_base64)
|
18 |
+
image = Image.open(io.BytesIO(image_bytes))
|
19 |
+
print('image size:', image.size)
|
20 |
+
|
21 |
+
box_overlay_ratio = max(image.size) / 3200
|
22 |
+
draw_bbox_config = {
|
23 |
+
'text_scale': 0.8 * box_overlay_ratio,
|
24 |
+
'text_thickness': max(int(2 * box_overlay_ratio), 1),
|
25 |
+
'text_padding': max(int(3 * box_overlay_ratio), 1),
|
26 |
+
'thickness': max(int(3 * box_overlay_ratio), 1),
|
27 |
+
}
|
28 |
+
|
29 |
+
(text, ocr_bbox), _ = check_ocr_box(image, display_img=False, output_bb_format='xyxy', easyocr_args={'text_threshold': 0.8}, use_paddleocr=False)
|
30 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image, self.som_model, BOX_TRESHOLD = self.config['BOX_TRESHOLD'], output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=self.caption_model_processor, ocr_text=text,use_local_semantics=True, iou_threshold=0.7, scale_img=False, batch_size=128)
|
31 |
+
|
32 |
+
return dino_labled_img, parsed_content_list
|
util/utils - 副本.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from ultralytics import YOLO
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import base64
|
5 |
+
import time
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
import json
|
8 |
+
import requests
|
9 |
+
# utility function
|
10 |
+
import os
|
11 |
+
from openai import AzureOpenAI
|
12 |
+
|
13 |
+
import json
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
import cv2
|
17 |
+
import numpy as np
|
18 |
+
# %matplotlib inline
|
19 |
+
from matplotlib import pyplot as plt
|
20 |
+
import easyocr
|
21 |
+
from paddleocr import PaddleOCR
|
22 |
+
reader = easyocr.Reader(['en'])
|
23 |
+
paddle_ocr = PaddleOCR(
|
24 |
+
lang='en', # other lang also available
|
25 |
+
use_angle_cls=False,
|
26 |
+
use_gpu=False, # using cuda will conflict with pytorch in the same process
|
27 |
+
show_log=False,
|
28 |
+
max_batch_size=1024,
|
29 |
+
use_dilation=True, # improves accuracy
|
30 |
+
det_db_score_mode='slow', # improves accuracy
|
31 |
+
rec_batch_num=1024)
|
32 |
+
import time
|
33 |
+
import base64
|
34 |
+
|
35 |
+
import os
|
36 |
+
import ast
|
37 |
+
import torch
|
38 |
+
from typing import Tuple, List, Union
|
39 |
+
from torchvision.ops import box_convert
|
40 |
+
import re
|
41 |
+
from torchvision.transforms import ToPILImage
|
42 |
+
import supervision as sv
|
43 |
+
import torchvision.transforms as T
|
44 |
+
from util.box_annotator import BoxAnnotator
|
45 |
+
|
46 |
+
|
47 |
+
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
|
48 |
+
if not device:
|
49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
if model_name == "blip2":
|
51 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
52 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
53 |
+
if device == 'cpu':
|
54 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
55 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float32
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
59 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float16
|
60 |
+
).to(device)
|
61 |
+
elif model_name == "florence2":
|
62 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
63 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
64 |
+
if device == 'cpu':
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
|
66 |
+
else:
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
|
68 |
+
return {'model': model.to(device), 'processor': processor}
|
69 |
+
|
70 |
+
|
71 |
+
def get_yolo_model(model_path):
|
72 |
+
from ultralytics import YOLO
|
73 |
+
# Load the model.
|
74 |
+
model = YOLO(model_path)
|
75 |
+
return model
|
76 |
+
|
77 |
+
|
78 |
+
@torch.inference_mode()
|
79 |
+
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=128):
|
80 |
+
# Number of samples per batch, --> 128 roughly takes 4 GB of GPU memory for florence v2 model
|
81 |
+
to_pil = ToPILImage()
|
82 |
+
if starting_idx:
|
83 |
+
non_ocr_boxes = filtered_boxes[starting_idx:]
|
84 |
+
else:
|
85 |
+
non_ocr_boxes = filtered_boxes
|
86 |
+
croped_pil_image = []
|
87 |
+
for i, coord in enumerate(non_ocr_boxes):
|
88 |
+
try:
|
89 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
90 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
91 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
92 |
+
cropped_image = cv2.resize(cropped_image, (64, 64))
|
93 |
+
croped_pil_image.append(to_pil(cropped_image))
|
94 |
+
except:
|
95 |
+
continue
|
96 |
+
|
97 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
98 |
+
if not prompt:
|
99 |
+
if 'florence' in model.config.name_or_path:
|
100 |
+
prompt = "<CAPTION>"
|
101 |
+
else:
|
102 |
+
prompt = "The image shows"
|
103 |
+
|
104 |
+
generated_texts = []
|
105 |
+
device = model.device
|
106 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
107 |
+
start = time.time()
|
108 |
+
batch = croped_pil_image[i:i+batch_size]
|
109 |
+
t1 = time.time()
|
110 |
+
if model.device.type == 'cuda':
|
111 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16)
|
112 |
+
else:
|
113 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
|
114 |
+
if 'florence' in model.config.name_or_path:
|
115 |
+
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=20,num_beams=1, do_sample=False)
|
116 |
+
else:
|
117 |
+
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
|
118 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
119 |
+
generated_text = [gen.strip() for gen in generated_text]
|
120 |
+
generated_texts.extend(generated_text)
|
121 |
+
|
122 |
+
return generated_texts
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
|
127 |
+
to_pil = ToPILImage()
|
128 |
+
if ocr_bbox:
|
129 |
+
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
|
130 |
+
else:
|
131 |
+
non_ocr_boxes = filtered_boxes
|
132 |
+
croped_pil_image = []
|
133 |
+
for i, coord in enumerate(non_ocr_boxes):
|
134 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
135 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
136 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
137 |
+
croped_pil_image.append(to_pil(cropped_image))
|
138 |
+
|
139 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
140 |
+
device = model.device
|
141 |
+
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
|
142 |
+
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
143 |
+
|
144 |
+
batch_size = 5 # Number of samples per batch
|
145 |
+
generated_texts = []
|
146 |
+
|
147 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
148 |
+
images = croped_pil_image[i:i+batch_size]
|
149 |
+
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
|
150 |
+
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
|
151 |
+
texts = [prompt] * len(images)
|
152 |
+
for i, txt in enumerate(texts):
|
153 |
+
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
|
154 |
+
inputs['input_ids'].append(input['input_ids'])
|
155 |
+
inputs['attention_mask'].append(input['attention_mask'])
|
156 |
+
inputs['pixel_values'].append(input['pixel_values'])
|
157 |
+
inputs['image_sizes'].append(input['image_sizes'])
|
158 |
+
max_len = max([x.shape[1] for x in inputs['input_ids']])
|
159 |
+
for i, v in enumerate(inputs['input_ids']):
|
160 |
+
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
|
161 |
+
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
|
162 |
+
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
|
163 |
+
|
164 |
+
generation_args = {
|
165 |
+
"max_new_tokens": 25,
|
166 |
+
"temperature": 0.01,
|
167 |
+
"do_sample": False,
|
168 |
+
}
|
169 |
+
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
170 |
+
# # remove input tokens
|
171 |
+
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
|
172 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
173 |
+
response = [res.strip('\n').strip() for res in response]
|
174 |
+
generated_texts.extend(response)
|
175 |
+
|
176 |
+
return generated_texts
|
177 |
+
|
178 |
+
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
|
179 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
180 |
+
|
181 |
+
def box_area(box):
|
182 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
183 |
+
|
184 |
+
def intersection_area(box1, box2):
|
185 |
+
x1 = max(box1[0], box2[0])
|
186 |
+
y1 = max(box1[1], box2[1])
|
187 |
+
x2 = min(box1[2], box2[2])
|
188 |
+
y2 = min(box1[3], box2[3])
|
189 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
190 |
+
|
191 |
+
def IoU(box1, box2):
|
192 |
+
intersection = intersection_area(box1, box2)
|
193 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
194 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
195 |
+
ratio1 = intersection / box_area(box1)
|
196 |
+
ratio2 = intersection / box_area(box2)
|
197 |
+
else:
|
198 |
+
ratio1, ratio2 = 0, 0
|
199 |
+
return max(intersection / union, ratio1, ratio2)
|
200 |
+
|
201 |
+
def is_inside(box1, box2):
|
202 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
203 |
+
intersection = intersection_area(box1, box2)
|
204 |
+
ratio1 = intersection / box_area(box1)
|
205 |
+
return ratio1 > 0.95
|
206 |
+
|
207 |
+
boxes = boxes.tolist()
|
208 |
+
filtered_boxes = []
|
209 |
+
if ocr_bbox:
|
210 |
+
filtered_boxes.extend(ocr_bbox)
|
211 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
212 |
+
for i, box1 in enumerate(boxes):
|
213 |
+
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
|
214 |
+
is_valid_box = True
|
215 |
+
for j, box2 in enumerate(boxes):
|
216 |
+
# keep the smaller box
|
217 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
218 |
+
is_valid_box = False
|
219 |
+
break
|
220 |
+
if is_valid_box:
|
221 |
+
# add the following 2 lines to include ocr bbox
|
222 |
+
if ocr_bbox:
|
223 |
+
# only add the box if it does not overlap with any ocr bbox
|
224 |
+
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
|
225 |
+
filtered_boxes.append(box1)
|
226 |
+
else:
|
227 |
+
filtered_boxes.append(box1)
|
228 |
+
return torch.tensor(filtered_boxes)
|
229 |
+
|
230 |
+
|
231 |
+
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
|
232 |
+
'''
|
233 |
+
ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...]
|
234 |
+
boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...]
|
235 |
+
|
236 |
+
'''
|
237 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
238 |
+
|
239 |
+
def box_area(box):
|
240 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
241 |
+
|
242 |
+
def intersection_area(box1, box2):
|
243 |
+
x1 = max(box1[0], box2[0])
|
244 |
+
y1 = max(box1[1], box2[1])
|
245 |
+
x2 = min(box1[2], box2[2])
|
246 |
+
y2 = min(box1[3], box2[3])
|
247 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
248 |
+
|
249 |
+
def IoU(box1, box2):
|
250 |
+
intersection = intersection_area(box1, box2)
|
251 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
252 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
253 |
+
ratio1 = intersection / box_area(box1)
|
254 |
+
ratio2 = intersection / box_area(box2)
|
255 |
+
else:
|
256 |
+
ratio1, ratio2 = 0, 0
|
257 |
+
return max(intersection / union, ratio1, ratio2)
|
258 |
+
|
259 |
+
def is_inside(box1, box2):
|
260 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
261 |
+
intersection = intersection_area(box1, box2)
|
262 |
+
ratio1 = intersection / box_area(box1)
|
263 |
+
return ratio1 > 0.80
|
264 |
+
|
265 |
+
# boxes = boxes.tolist()
|
266 |
+
filtered_boxes = []
|
267 |
+
if ocr_bbox:
|
268 |
+
filtered_boxes.extend(ocr_bbox)
|
269 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
270 |
+
for i, box1_elem in enumerate(boxes):
|
271 |
+
box1 = box1_elem['bbox']
|
272 |
+
is_valid_box = True
|
273 |
+
for j, box2_elem in enumerate(boxes):
|
274 |
+
# keep the smaller box
|
275 |
+
box2 = box2_elem['bbox']
|
276 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
277 |
+
is_valid_box = False
|
278 |
+
break
|
279 |
+
if is_valid_box:
|
280 |
+
if ocr_bbox:
|
281 |
+
# keep yolo boxes + prioritize ocr label
|
282 |
+
box_added = False
|
283 |
+
ocr_labels = ''
|
284 |
+
for box3_elem in ocr_bbox:
|
285 |
+
if not box_added:
|
286 |
+
box3 = box3_elem['bbox']
|
287 |
+
if is_inside(box3, box1): # ocr inside icon
|
288 |
+
# box_added = True
|
289 |
+
# delete the box3_elem from ocr_bbox
|
290 |
+
try:
|
291 |
+
# gather all ocr labels
|
292 |
+
ocr_labels += box3_elem['content'] + ' '
|
293 |
+
filtered_boxes.remove(box3_elem)
|
294 |
+
except:
|
295 |
+
continue
|
296 |
+
# break
|
297 |
+
elif is_inside(box1, box3): # icon inside ocr, don't added this icon box, no need to check other ocr bbox bc no overlap between ocr bbox, icon can only be in one ocr box
|
298 |
+
box_added = True
|
299 |
+
break
|
300 |
+
else:
|
301 |
+
continue
|
302 |
+
if not box_added:
|
303 |
+
if ocr_labels:
|
304 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels, 'source':'box_yolo_content_ocr'})
|
305 |
+
else:
|
306 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, 'source':'box_yolo_content_yolo'})
|
307 |
+
else:
|
308 |
+
filtered_boxes.append(box1)
|
309 |
+
return filtered_boxes # torch.tensor(filtered_boxes)
|
310 |
+
|
311 |
+
|
312 |
+
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
313 |
+
transform = T.Compose(
|
314 |
+
[
|
315 |
+
T.RandomResize([800], max_size=1333),
|
316 |
+
T.ToTensor(),
|
317 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
318 |
+
]
|
319 |
+
)
|
320 |
+
image_source = Image.open(image_path).convert("RGB")
|
321 |
+
image = np.asarray(image_source)
|
322 |
+
image_transformed, _ = transform(image_source, None)
|
323 |
+
return image, image_transformed
|
324 |
+
|
325 |
+
|
326 |
+
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
|
327 |
+
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
|
328 |
+
"""
|
329 |
+
This function annotates an image with bounding boxes and labels.
|
330 |
+
|
331 |
+
Parameters:
|
332 |
+
image_source (np.ndarray): The source image to be annotated.
|
333 |
+
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
|
334 |
+
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
335 |
+
phrases (List[str]): A list of labels for each bounding box.
|
336 |
+
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
np.ndarray: The annotated image.
|
340 |
+
"""
|
341 |
+
h, w, _ = image_source.shape
|
342 |
+
boxes = boxes * torch.Tensor([w, h, w, h])
|
343 |
+
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
344 |
+
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
|
345 |
+
detections = sv.Detections(xyxy=xyxy)
|
346 |
+
|
347 |
+
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
|
348 |
+
|
349 |
+
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
350 |
+
annotated_frame = image_source.copy()
|
351 |
+
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
|
352 |
+
|
353 |
+
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
|
354 |
+
return annotated_frame, label_coordinates
|
355 |
+
|
356 |
+
|
357 |
+
def predict(model, image, caption, box_threshold, text_threshold):
|
358 |
+
""" Use huggingface model to replace the original model
|
359 |
+
"""
|
360 |
+
model, processor = model['model'], model['processor']
|
361 |
+
device = model.device
|
362 |
+
|
363 |
+
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
|
364 |
+
with torch.no_grad():
|
365 |
+
outputs = model(**inputs)
|
366 |
+
|
367 |
+
results = processor.post_process_grounded_object_detection(
|
368 |
+
outputs,
|
369 |
+
inputs.input_ids,
|
370 |
+
box_threshold=box_threshold, # 0.4,
|
371 |
+
text_threshold=text_threshold, # 0.3,
|
372 |
+
target_sizes=[image.size[::-1]]
|
373 |
+
)[0]
|
374 |
+
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
|
375 |
+
return boxes, logits, phrases
|
376 |
+
|
377 |
+
|
378 |
+
def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7):
|
379 |
+
""" Use huggingface model to replace the original model
|
380 |
+
"""
|
381 |
+
# model = model['model']
|
382 |
+
if scale_img:
|
383 |
+
result = model.predict(
|
384 |
+
source=image,
|
385 |
+
conf=box_threshold,
|
386 |
+
imgsz=imgsz,
|
387 |
+
iou=iou_threshold, # default 0.7
|
388 |
+
)
|
389 |
+
else:
|
390 |
+
result = model.predict(
|
391 |
+
source=image,
|
392 |
+
conf=box_threshold,
|
393 |
+
iou=iou_threshold, # default 0.7
|
394 |
+
)
|
395 |
+
boxes = result[0].boxes.xyxy#.tolist() # in pixel space
|
396 |
+
conf = result[0].boxes.conf
|
397 |
+
phrases = [str(i) for i in range(len(boxes))]
|
398 |
+
|
399 |
+
return boxes, conf, phrases
|
400 |
+
|
401 |
+
def int_box_area(box, w, h):
|
402 |
+
x1, y1, x2, y2 = box
|
403 |
+
int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)]
|
404 |
+
area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1])
|
405 |
+
return area
|
406 |
+
|
407 |
+
def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=128):
|
408 |
+
"""Process either an image path or Image object
|
409 |
+
|
410 |
+
Args:
|
411 |
+
image_source: Either a file path (str) or PIL Image object
|
412 |
+
...
|
413 |
+
"""
|
414 |
+
if isinstance(image_source, str):
|
415 |
+
image_source = Image.open(image_source)
|
416 |
+
image_source = image_source.convert("RGB") # for CLIP
|
417 |
+
w, h = image_source.size
|
418 |
+
if not imgsz:
|
419 |
+
imgsz = (h, w)
|
420 |
+
# print('image size:', w, h)
|
421 |
+
xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
|
422 |
+
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
|
423 |
+
image_source = np.asarray(image_source)
|
424 |
+
phrases = [str(i) for i in range(len(phrases))]
|
425 |
+
|
426 |
+
# annotate the image with labels
|
427 |
+
if ocr_bbox:
|
428 |
+
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
|
429 |
+
ocr_bbox=ocr_bbox.tolist()
|
430 |
+
else:
|
431 |
+
print('no ocr bbox!!!')
|
432 |
+
ocr_bbox = None
|
433 |
+
|
434 |
+
ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0]
|
435 |
+
xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
|
436 |
+
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
|
437 |
+
|
438 |
+
# sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
|
439 |
+
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
|
440 |
+
# get the index of the first 'content': None
|
441 |
+
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
|
442 |
+
filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
|
443 |
+
print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
|
444 |
+
|
445 |
+
# get parsed icon local semantics
|
446 |
+
time1 = time.time()
|
447 |
+
if use_local_semantics:
|
448 |
+
caption_model = caption_model_processor['model']
|
449 |
+
if 'phi3_v' in caption_model.config.model_type:
|
450 |
+
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
|
451 |
+
else:
|
452 |
+
parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
|
453 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
454 |
+
icon_start = len(ocr_text)
|
455 |
+
parsed_content_icon_ls = []
|
456 |
+
# fill the filtered_boxes_elem None content with parsed_content_icon in order
|
457 |
+
for i, box in enumerate(filtered_boxes_elem):
|
458 |
+
if box['content'] is None:
|
459 |
+
box['content'] = parsed_content_icon.pop(0)
|
460 |
+
for i, txt in enumerate(parsed_content_icon):
|
461 |
+
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
|
462 |
+
parsed_content_merged = ocr_text + parsed_content_icon_ls
|
463 |
+
else:
|
464 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
465 |
+
parsed_content_merged = ocr_text
|
466 |
+
print('time to get parsed content:', time.time()-time1)
|
467 |
+
|
468 |
+
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
469 |
+
|
470 |
+
phrases = [i for i in range(len(filtered_boxes))]
|
471 |
+
|
472 |
+
# draw boxes
|
473 |
+
if draw_bbox_config:
|
474 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
|
475 |
+
else:
|
476 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
|
477 |
+
|
478 |
+
pil_img = Image.fromarray(annotated_frame)
|
479 |
+
buffered = io.BytesIO()
|
480 |
+
pil_img.save(buffered, format="PNG")
|
481 |
+
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
|
482 |
+
if output_coord_in_ratio:
|
483 |
+
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
|
484 |
+
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
|
485 |
+
|
486 |
+
return encoded_image, label_coordinates, filtered_boxes_elem
|
487 |
+
|
488 |
+
|
489 |
+
def get_xywh(input):
|
490 |
+
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
|
491 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
492 |
+
return x, y, w, h
|
493 |
+
|
494 |
+
def get_xyxy(input):
|
495 |
+
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
|
496 |
+
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
|
497 |
+
return x, y, xp, yp
|
498 |
+
|
499 |
+
def get_xywh_yolo(input):
|
500 |
+
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
|
501 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
502 |
+
return x, y, w, h
|
503 |
+
|
504 |
+
def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
|
505 |
+
if isinstance(image_source, str):
|
506 |
+
image_source = Image.open(image_source)
|
507 |
+
if image_source.mode == 'RGBA':
|
508 |
+
# Convert RGBA to RGB to avoid alpha channel issues
|
509 |
+
image_source = image_source.convert('RGB')
|
510 |
+
image_np = np.array(image_source)
|
511 |
+
w, h = image_source.size
|
512 |
+
if use_paddleocr:
|
513 |
+
if easyocr_args is None:
|
514 |
+
text_threshold = 0.5
|
515 |
+
else:
|
516 |
+
text_threshold = easyocr_args['text_threshold']
|
517 |
+
result = paddle_ocr.ocr(image_np, cls=False)[0]
|
518 |
+
coord = [item[0] for item in result if item[1][1] > text_threshold]
|
519 |
+
text = [item[1][0] for item in result if item[1][1] > text_threshold]
|
520 |
+
else: # EasyOCR
|
521 |
+
if easyocr_args is None:
|
522 |
+
easyocr_args = {}
|
523 |
+
result = reader.readtext(image_np, **easyocr_args)
|
524 |
+
coord = [item[0] for item in result]
|
525 |
+
text = [item[1] for item in result]
|
526 |
+
if display_img:
|
527 |
+
opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
528 |
+
bb = []
|
529 |
+
for item in coord:
|
530 |
+
x, y, a, b = get_xywh(item)
|
531 |
+
bb.append((x, y, a, b))
|
532 |
+
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
|
533 |
+
# matplotlib expects RGB
|
534 |
+
plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB))
|
535 |
+
else:
|
536 |
+
if output_bb_format == 'xywh':
|
537 |
+
bb = [get_xywh(item) for item in coord]
|
538 |
+
elif output_bb_format == 'xyxy':
|
539 |
+
bb = [get_xyxy(item) for item in coord]
|
540 |
+
return (text, bb), goal_filtering
|
util/utils.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from ultralytics import YOLO
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import base64
|
5 |
+
import time
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
import json
|
8 |
+
import requests
|
9 |
+
# utility function
|
10 |
+
import os
|
11 |
+
from openai import AzureOpenAI
|
12 |
+
|
13 |
+
import json
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
import cv2
|
17 |
+
import numpy as np
|
18 |
+
# %matplotlib inline
|
19 |
+
from matplotlib import pyplot as plt
|
20 |
+
import easyocr
|
21 |
+
from paddleocr import PaddleOCR
|
22 |
+
reader = easyocr.Reader(['en'])
|
23 |
+
paddle_ocr = PaddleOCR(
|
24 |
+
lang='en', # other lang also available
|
25 |
+
use_angle_cls=False,
|
26 |
+
use_gpu=False, # using cuda will conflict with pytorch in the same process
|
27 |
+
show_log=False,
|
28 |
+
max_batch_size=1024,
|
29 |
+
use_dilation=True, # improves accuracy
|
30 |
+
det_db_score_mode='slow', # improves accuracy
|
31 |
+
rec_batch_num=1024)
|
32 |
+
import time
|
33 |
+
import base64
|
34 |
+
|
35 |
+
import os
|
36 |
+
import ast
|
37 |
+
import torch
|
38 |
+
from typing import Tuple, List, Union
|
39 |
+
from torchvision.ops import box_convert
|
40 |
+
import re
|
41 |
+
from torchvision.transforms import ToPILImage
|
42 |
+
import supervision as sv
|
43 |
+
import torchvision.transforms as T
|
44 |
+
from util.box_annotator import BoxAnnotator
|
45 |
+
|
46 |
+
|
47 |
+
def get_caption_model_processor(model_name, model_name_or_path="Salesforce/blip2-opt-2.7b", device=None):
|
48 |
+
if not device:
|
49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
if model_name == "blip2":
|
51 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
52 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
53 |
+
if device == 'cpu':
|
54 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
55 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float32
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
59 |
+
model_name_or_path, device_map=None, torch_dtype=torch.float16
|
60 |
+
).to(device)
|
61 |
+
elif model_name == "florence2":
|
62 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
63 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
64 |
+
if device == 'cpu':
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)
|
66 |
+
else:
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True).to(device)
|
68 |
+
return {'model': model.to(device), 'processor': processor}
|
69 |
+
|
70 |
+
|
71 |
+
def get_yolo_model(model_path):
|
72 |
+
from ultralytics import YOLO
|
73 |
+
# Load the model.
|
74 |
+
model = YOLO(model_path)
|
75 |
+
return model
|
76 |
+
|
77 |
+
|
78 |
+
@torch.inference_mode()
|
79 |
+
def get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=None, batch_size=128):
|
80 |
+
# Number of samples per batch, --> 128 roughly takes 4 GB of GPU memory for florence v2 model
|
81 |
+
to_pil = ToPILImage()
|
82 |
+
if starting_idx:
|
83 |
+
non_ocr_boxes = filtered_boxes[starting_idx:]
|
84 |
+
else:
|
85 |
+
non_ocr_boxes = filtered_boxes
|
86 |
+
croped_pil_image = []
|
87 |
+
for i, coord in enumerate(non_ocr_boxes):
|
88 |
+
try:
|
89 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
90 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
91 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
92 |
+
cropped_image = cv2.resize(cropped_image, (64, 64))
|
93 |
+
croped_pil_image.append(to_pil(cropped_image))
|
94 |
+
except:
|
95 |
+
continue
|
96 |
+
|
97 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
98 |
+
if not prompt:
|
99 |
+
if 'florence' in model.config.name_or_path:
|
100 |
+
prompt = "<CAPTION>"
|
101 |
+
else:
|
102 |
+
prompt = "The image shows"
|
103 |
+
|
104 |
+
generated_texts = []
|
105 |
+
device = model.device
|
106 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
107 |
+
start = time.time()
|
108 |
+
batch = croped_pil_image[i:i+batch_size]
|
109 |
+
t1 = time.time()
|
110 |
+
if model.device.type == 'cuda':
|
111 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt", do_resize=False).to(device=device, dtype=torch.float16)
|
112 |
+
else:
|
113 |
+
inputs = processor(images=batch, text=[prompt]*len(batch), return_tensors="pt").to(device=device)
|
114 |
+
if 'florence' in model.config.name_or_path:
|
115 |
+
generated_ids = model.generate(input_ids=inputs["input_ids"],pixel_values=inputs["pixel_values"],max_new_tokens=20,num_beams=1, do_sample=False)
|
116 |
+
else:
|
117 |
+
generated_ids = model.generate(**inputs, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True, num_return_sequences=1) # temperature=0.01, do_sample=True,
|
118 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
119 |
+
generated_text = [gen.strip() for gen in generated_text]
|
120 |
+
generated_texts.extend(generated_text)
|
121 |
+
|
122 |
+
return generated_texts
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor):
|
127 |
+
to_pil = ToPILImage()
|
128 |
+
if ocr_bbox:
|
129 |
+
non_ocr_boxes = filtered_boxes[len(ocr_bbox):]
|
130 |
+
else:
|
131 |
+
non_ocr_boxes = filtered_boxes
|
132 |
+
croped_pil_image = []
|
133 |
+
for i, coord in enumerate(non_ocr_boxes):
|
134 |
+
xmin, xmax = int(coord[0]*image_source.shape[1]), int(coord[2]*image_source.shape[1])
|
135 |
+
ymin, ymax = int(coord[1]*image_source.shape[0]), int(coord[3]*image_source.shape[0])
|
136 |
+
cropped_image = image_source[ymin:ymax, xmin:xmax, :]
|
137 |
+
croped_pil_image.append(to_pil(cropped_image))
|
138 |
+
|
139 |
+
model, processor = caption_model_processor['model'], caption_model_processor['processor']
|
140 |
+
device = model.device
|
141 |
+
messages = [{"role": "user", "content": "<|image_1|>\ndescribe the icon in one sentence"}]
|
142 |
+
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
143 |
+
|
144 |
+
batch_size = 5 # Number of samples per batch
|
145 |
+
generated_texts = []
|
146 |
+
|
147 |
+
for i in range(0, len(croped_pil_image), batch_size):
|
148 |
+
images = croped_pil_image[i:i+batch_size]
|
149 |
+
image_inputs = [processor.image_processor(x, return_tensors="pt") for x in images]
|
150 |
+
inputs ={'input_ids': [], 'attention_mask': [], 'pixel_values': [], 'image_sizes': []}
|
151 |
+
texts = [prompt] * len(images)
|
152 |
+
for i, txt in enumerate(texts):
|
153 |
+
input = processor._convert_images_texts_to_inputs(image_inputs[i], txt, return_tensors="pt")
|
154 |
+
inputs['input_ids'].append(input['input_ids'])
|
155 |
+
inputs['attention_mask'].append(input['attention_mask'])
|
156 |
+
inputs['pixel_values'].append(input['pixel_values'])
|
157 |
+
inputs['image_sizes'].append(input['image_sizes'])
|
158 |
+
max_len = max([x.shape[1] for x in inputs['input_ids']])
|
159 |
+
for i, v in enumerate(inputs['input_ids']):
|
160 |
+
inputs['input_ids'][i] = torch.cat([processor.tokenizer.pad_token_id * torch.ones(1, max_len - v.shape[1], dtype=torch.long), v], dim=1)
|
161 |
+
inputs['attention_mask'][i] = torch.cat([torch.zeros(1, max_len - v.shape[1], dtype=torch.long), inputs['attention_mask'][i]], dim=1)
|
162 |
+
inputs_cat = {k: torch.concatenate(v).to(device) for k, v in inputs.items()}
|
163 |
+
|
164 |
+
generation_args = {
|
165 |
+
"max_new_tokens": 25,
|
166 |
+
"temperature": 0.01,
|
167 |
+
"do_sample": False,
|
168 |
+
}
|
169 |
+
generate_ids = model.generate(**inputs_cat, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
170 |
+
# # remove input tokens
|
171 |
+
generate_ids = generate_ids[:, inputs_cat['input_ids'].shape[1]:]
|
172 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
173 |
+
response = [res.strip('\n').strip() for res in response]
|
174 |
+
generated_texts.extend(response)
|
175 |
+
|
176 |
+
return generated_texts
|
177 |
+
|
178 |
+
def remove_overlap(boxes, iou_threshold, ocr_bbox=None):
|
179 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
180 |
+
|
181 |
+
def box_area(box):
|
182 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
183 |
+
|
184 |
+
def intersection_area(box1, box2):
|
185 |
+
x1 = max(box1[0], box2[0])
|
186 |
+
y1 = max(box1[1], box2[1])
|
187 |
+
x2 = min(box1[2], box2[2])
|
188 |
+
y2 = min(box1[3], box2[3])
|
189 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
190 |
+
|
191 |
+
def IoU(box1, box2):
|
192 |
+
intersection = intersection_area(box1, box2)
|
193 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
194 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
195 |
+
ratio1 = intersection / box_area(box1)
|
196 |
+
ratio2 = intersection / box_area(box2)
|
197 |
+
else:
|
198 |
+
ratio1, ratio2 = 0, 0
|
199 |
+
return max(intersection / union, ratio1, ratio2)
|
200 |
+
|
201 |
+
def is_inside(box1, box2):
|
202 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
203 |
+
intersection = intersection_area(box1, box2)
|
204 |
+
ratio1 = intersection / box_area(box1)
|
205 |
+
return ratio1 > 0.95
|
206 |
+
|
207 |
+
boxes = boxes.tolist()
|
208 |
+
filtered_boxes = []
|
209 |
+
if ocr_bbox:
|
210 |
+
filtered_boxes.extend(ocr_bbox)
|
211 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
212 |
+
for i, box1 in enumerate(boxes):
|
213 |
+
# if not any(IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2) for j, box2 in enumerate(boxes) if i != j):
|
214 |
+
is_valid_box = True
|
215 |
+
for j, box2 in enumerate(boxes):
|
216 |
+
# keep the smaller box
|
217 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
218 |
+
is_valid_box = False
|
219 |
+
break
|
220 |
+
if is_valid_box:
|
221 |
+
# add the following 2 lines to include ocr bbox
|
222 |
+
if ocr_bbox:
|
223 |
+
# only add the box if it does not overlap with any ocr bbox
|
224 |
+
if not any(IoU(box1, box3) > iou_threshold and not is_inside(box1, box3) for k, box3 in enumerate(ocr_bbox)):
|
225 |
+
filtered_boxes.append(box1)
|
226 |
+
else:
|
227 |
+
filtered_boxes.append(box1)
|
228 |
+
return torch.tensor(filtered_boxes)
|
229 |
+
|
230 |
+
|
231 |
+
def remove_overlap_new(boxes, iou_threshold, ocr_bbox=None):
|
232 |
+
'''
|
233 |
+
ocr_bbox format: [{'type': 'text', 'bbox':[x,y], 'interactivity':False, 'content':str }, ...]
|
234 |
+
boxes format: [{'type': 'icon', 'bbox':[x,y], 'interactivity':True, 'content':None }, ...]
|
235 |
+
|
236 |
+
'''
|
237 |
+
assert ocr_bbox is None or isinstance(ocr_bbox, List)
|
238 |
+
|
239 |
+
def box_area(box):
|
240 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
241 |
+
|
242 |
+
def intersection_area(box1, box2):
|
243 |
+
x1 = max(box1[0], box2[0])
|
244 |
+
y1 = max(box1[1], box2[1])
|
245 |
+
x2 = min(box1[2], box2[2])
|
246 |
+
y2 = min(box1[3], box2[3])
|
247 |
+
return max(0, x2 - x1) * max(0, y2 - y1)
|
248 |
+
|
249 |
+
def IoU(box1, box2):
|
250 |
+
intersection = intersection_area(box1, box2)
|
251 |
+
union = box_area(box1) + box_area(box2) - intersection + 1e-6
|
252 |
+
if box_area(box1) > 0 and box_area(box2) > 0:
|
253 |
+
ratio1 = intersection / box_area(box1)
|
254 |
+
ratio2 = intersection / box_area(box2)
|
255 |
+
else:
|
256 |
+
ratio1, ratio2 = 0, 0
|
257 |
+
return max(intersection / union, ratio1, ratio2)
|
258 |
+
|
259 |
+
def is_inside(box1, box2):
|
260 |
+
# return box1[0] >= box2[0] and box1[1] >= box2[1] and box1[2] <= box2[2] and box1[3] <= box2[3]
|
261 |
+
intersection = intersection_area(box1, box2)
|
262 |
+
ratio1 = intersection / box_area(box1)
|
263 |
+
return ratio1 > 0.80
|
264 |
+
|
265 |
+
# boxes = boxes.tolist()
|
266 |
+
filtered_boxes = []
|
267 |
+
if ocr_bbox:
|
268 |
+
filtered_boxes.extend(ocr_bbox)
|
269 |
+
# print('ocr_bbox!!!', ocr_bbox)
|
270 |
+
for i, box1_elem in enumerate(boxes):
|
271 |
+
box1 = box1_elem['bbox']
|
272 |
+
is_valid_box = True
|
273 |
+
for j, box2_elem in enumerate(boxes):
|
274 |
+
# keep the smaller box
|
275 |
+
box2 = box2_elem['bbox']
|
276 |
+
if i != j and IoU(box1, box2) > iou_threshold and box_area(box1) > box_area(box2):
|
277 |
+
is_valid_box = False
|
278 |
+
break
|
279 |
+
if is_valid_box:
|
280 |
+
if ocr_bbox:
|
281 |
+
# keep yolo boxes + prioritize ocr label
|
282 |
+
box_added = False
|
283 |
+
ocr_labels = ''
|
284 |
+
for box3_elem in ocr_bbox:
|
285 |
+
if not box_added:
|
286 |
+
box3 = box3_elem['bbox']
|
287 |
+
if is_inside(box3, box1): # ocr inside icon
|
288 |
+
# box_added = True
|
289 |
+
# delete the box3_elem from ocr_bbox
|
290 |
+
try:
|
291 |
+
# gather all ocr labels
|
292 |
+
ocr_labels += box3_elem['content'] + ' '
|
293 |
+
filtered_boxes.remove(box3_elem)
|
294 |
+
except:
|
295 |
+
continue
|
296 |
+
# break
|
297 |
+
elif is_inside(box1, box3): # icon inside ocr, don't added this icon box, no need to check other ocr bbox bc no overlap between ocr bbox, icon can only be in one ocr box
|
298 |
+
box_added = True
|
299 |
+
break
|
300 |
+
else:
|
301 |
+
continue
|
302 |
+
if not box_added:
|
303 |
+
if ocr_labels:
|
304 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': ocr_labels, 'source':'box_yolo_content_ocr'})
|
305 |
+
else:
|
306 |
+
filtered_boxes.append({'type': 'icon', 'bbox': box1_elem['bbox'], 'interactivity': True, 'content': None, 'source':'box_yolo_content_yolo'})
|
307 |
+
else:
|
308 |
+
filtered_boxes.append(box1)
|
309 |
+
return filtered_boxes # torch.tensor(filtered_boxes)
|
310 |
+
|
311 |
+
|
312 |
+
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
|
313 |
+
transform = T.Compose(
|
314 |
+
[
|
315 |
+
T.RandomResize([800], max_size=1333),
|
316 |
+
T.ToTensor(),
|
317 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
318 |
+
]
|
319 |
+
)
|
320 |
+
image_source = Image.open(image_path).convert("RGB")
|
321 |
+
image = np.asarray(image_source)
|
322 |
+
image_transformed, _ = transform(image_source, None)
|
323 |
+
return image, image_transformed
|
324 |
+
|
325 |
+
|
326 |
+
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str], text_scale: float,
|
327 |
+
text_padding=5, text_thickness=2, thickness=3) -> np.ndarray:
|
328 |
+
"""
|
329 |
+
This function annotates an image with bounding boxes and labels.
|
330 |
+
|
331 |
+
Parameters:
|
332 |
+
image_source (np.ndarray): The source image to be annotated.
|
333 |
+
boxes (torch.Tensor): A tensor containing bounding box coordinates. in cxcywh format, pixel scale
|
334 |
+
logits (torch.Tensor): A tensor containing confidence scores for each bounding box.
|
335 |
+
phrases (List[str]): A list of labels for each bounding box.
|
336 |
+
text_scale (float): The scale of the text to be displayed. 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
337 |
+
|
338 |
+
Returns:
|
339 |
+
np.ndarray: The annotated image.
|
340 |
+
"""
|
341 |
+
h, w, _ = image_source.shape
|
342 |
+
boxes = boxes * torch.Tensor([w, h, w, h])
|
343 |
+
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
344 |
+
xywh = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xywh").numpy()
|
345 |
+
detections = sv.Detections(xyxy=xyxy)
|
346 |
+
|
347 |
+
labels = [f"{phrase}" for phrase in range(boxes.shape[0])]
|
348 |
+
|
349 |
+
box_annotator = BoxAnnotator(text_scale=text_scale, text_padding=text_padding,text_thickness=text_thickness,thickness=thickness) # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
|
350 |
+
annotated_frame = image_source.copy()
|
351 |
+
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels, image_size=(w,h))
|
352 |
+
|
353 |
+
label_coordinates = {f"{phrase}": v for phrase, v in zip(phrases, xywh)}
|
354 |
+
return annotated_frame, label_coordinates
|
355 |
+
|
356 |
+
|
357 |
+
def predict(model, image, caption, box_threshold, text_threshold):
|
358 |
+
""" Use huggingface model to replace the original model
|
359 |
+
"""
|
360 |
+
model, processor = model['model'], model['processor']
|
361 |
+
device = model.device
|
362 |
+
|
363 |
+
inputs = processor(images=image, text=caption, return_tensors="pt").to(device)
|
364 |
+
with torch.no_grad():
|
365 |
+
outputs = model(**inputs)
|
366 |
+
|
367 |
+
results = processor.post_process_grounded_object_detection(
|
368 |
+
outputs,
|
369 |
+
inputs.input_ids,
|
370 |
+
box_threshold=box_threshold, # 0.4,
|
371 |
+
text_threshold=text_threshold, # 0.3,
|
372 |
+
target_sizes=[image.size[::-1]]
|
373 |
+
)[0]
|
374 |
+
boxes, logits, phrases = results["boxes"], results["scores"], results["labels"]
|
375 |
+
return boxes, logits, phrases
|
376 |
+
|
377 |
+
|
378 |
+
def predict_yolo(model, image, box_threshold, imgsz, scale_img, iou_threshold=0.7):
|
379 |
+
""" Use huggingface model to replace the original model
|
380 |
+
"""
|
381 |
+
# model = model['model']
|
382 |
+
if scale_img:
|
383 |
+
result = model.predict(
|
384 |
+
source=image,
|
385 |
+
conf=box_threshold,
|
386 |
+
imgsz=imgsz,
|
387 |
+
iou=iou_threshold, # default 0.7
|
388 |
+
)
|
389 |
+
else:
|
390 |
+
result = model.predict(
|
391 |
+
source=image,
|
392 |
+
conf=box_threshold,
|
393 |
+
iou=iou_threshold, # default 0.7
|
394 |
+
)
|
395 |
+
boxes = result[0].boxes.xyxy#.tolist() # in pixel space
|
396 |
+
conf = result[0].boxes.conf
|
397 |
+
phrases = [str(i) for i in range(len(boxes))]
|
398 |
+
|
399 |
+
return boxes, conf, phrases
|
400 |
+
|
401 |
+
def int_box_area(box, w, h):
|
402 |
+
x1, y1, x2, y2 = box
|
403 |
+
int_box = [int(x1*w), int(y1*h), int(x2*w), int(y2*h)]
|
404 |
+
area = (int_box[2] - int_box[0]) * (int_box[3] - int_box[1])
|
405 |
+
return area
|
406 |
+
|
407 |
+
def get_som_labeled_img(image_source: Union[str, Image.Image], model=None, BOX_TRESHOLD=0.01, output_coord_in_ratio=False, ocr_bbox=None, text_scale=0.4, text_padding=5, draw_bbox_config=None, caption_model_processor=None, ocr_text=[], use_local_semantics=True, iou_threshold=0.9,prompt=None, scale_img=False, imgsz=None, batch_size=128):
|
408 |
+
"""Process either an image path or Image object
|
409 |
+
|
410 |
+
Args:
|
411 |
+
image_source: Either a file path (str) or PIL Image object
|
412 |
+
...
|
413 |
+
"""
|
414 |
+
if isinstance(image_source, str):
|
415 |
+
image_source = Image.open(image_source)
|
416 |
+
image_source = image_source.convert("RGB") # for CLIP
|
417 |
+
w, h = image_source.size
|
418 |
+
if not imgsz:
|
419 |
+
imgsz = (h, w)
|
420 |
+
# print('image size:', w, h)
|
421 |
+
xyxy, logits, phrases = predict_yolo(model=model, image=image_source, box_threshold=BOX_TRESHOLD, imgsz=imgsz, scale_img=scale_img, iou_threshold=0.1)
|
422 |
+
xyxy = xyxy / torch.Tensor([w, h, w, h]).to(xyxy.device)
|
423 |
+
image_source = np.asarray(image_source)
|
424 |
+
phrases = [str(i) for i in range(len(phrases))]
|
425 |
+
|
426 |
+
# annotate the image with labels
|
427 |
+
if ocr_bbox:
|
428 |
+
ocr_bbox = torch.tensor(ocr_bbox) / torch.Tensor([w, h, w, h])
|
429 |
+
ocr_bbox=ocr_bbox.tolist()
|
430 |
+
else:
|
431 |
+
print('no ocr bbox!!!')
|
432 |
+
ocr_bbox = None
|
433 |
+
|
434 |
+
ocr_bbox_elem = [{'type': 'text', 'bbox':box, 'interactivity':False, 'content':txt, 'source': 'box_ocr_content_ocr'} for box, txt in zip(ocr_bbox, ocr_text) if int_box_area(box, w, h) > 0]
|
435 |
+
xyxy_elem = [{'type': 'icon', 'bbox':box, 'interactivity':True, 'content':None} for box in xyxy.tolist() if int_box_area(box, w, h) > 0]
|
436 |
+
filtered_boxes = remove_overlap_new(boxes=xyxy_elem, iou_threshold=iou_threshold, ocr_bbox=ocr_bbox_elem)
|
437 |
+
|
438 |
+
# sort the filtered_boxes so that the one with 'content': None is at the end, and get the index of the first 'content': None
|
439 |
+
filtered_boxes_elem = sorted(filtered_boxes, key=lambda x: x['content'] is None)
|
440 |
+
# get the index of the first 'content': None
|
441 |
+
starting_idx = next((i for i, box in enumerate(filtered_boxes_elem) if box['content'] is None), -1)
|
442 |
+
filtered_boxes = torch.tensor([box['bbox'] for box in filtered_boxes_elem])
|
443 |
+
print('len(filtered_boxes):', len(filtered_boxes), starting_idx)
|
444 |
+
|
445 |
+
# get parsed icon local semantics
|
446 |
+
time1 = time.time()
|
447 |
+
if use_local_semantics:
|
448 |
+
caption_model = caption_model_processor['model']
|
449 |
+
if 'phi3_v' in caption_model.config.model_type:
|
450 |
+
parsed_content_icon = get_parsed_content_icon_phi3v(filtered_boxes, ocr_bbox, image_source, caption_model_processor)
|
451 |
+
else:
|
452 |
+
parsed_content_icon = get_parsed_content_icon(filtered_boxes, starting_idx, image_source, caption_model_processor, prompt=prompt,batch_size=batch_size)
|
453 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
454 |
+
icon_start = len(ocr_text)
|
455 |
+
parsed_content_icon_ls = []
|
456 |
+
# fill the filtered_boxes_elem None content with parsed_content_icon in order
|
457 |
+
for i, box in enumerate(filtered_boxes_elem):
|
458 |
+
if box['content'] is None:
|
459 |
+
box['content'] = parsed_content_icon.pop(0)
|
460 |
+
for i, txt in enumerate(parsed_content_icon):
|
461 |
+
parsed_content_icon_ls.append(f"Icon Box ID {str(i+icon_start)}: {txt}")
|
462 |
+
parsed_content_merged = ocr_text + parsed_content_icon_ls
|
463 |
+
else:
|
464 |
+
ocr_text = [f"Text Box ID {i}: {txt}" for i, txt in enumerate(ocr_text)]
|
465 |
+
parsed_content_merged = ocr_text
|
466 |
+
print('time to get parsed content:', time.time()-time1)
|
467 |
+
|
468 |
+
filtered_boxes = box_convert(boxes=filtered_boxes, in_fmt="xyxy", out_fmt="cxcywh")
|
469 |
+
|
470 |
+
phrases = [i for i in range(len(filtered_boxes))]
|
471 |
+
|
472 |
+
# draw boxes
|
473 |
+
if draw_bbox_config:
|
474 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, **draw_bbox_config)
|
475 |
+
else:
|
476 |
+
annotated_frame, label_coordinates = annotate(image_source=image_source, boxes=filtered_boxes, logits=logits, phrases=phrases, text_scale=text_scale, text_padding=text_padding)
|
477 |
+
|
478 |
+
pil_img = Image.fromarray(annotated_frame)
|
479 |
+
buffered = io.BytesIO()
|
480 |
+
pil_img.save(buffered, format="PNG")
|
481 |
+
encoded_image = base64.b64encode(buffered.getvalue()).decode('ascii')
|
482 |
+
if output_coord_in_ratio:
|
483 |
+
label_coordinates = {k: [v[0]/w, v[1]/h, v[2]/w, v[3]/h] for k, v in label_coordinates.items()}
|
484 |
+
assert w == annotated_frame.shape[1] and h == annotated_frame.shape[0]
|
485 |
+
|
486 |
+
return encoded_image, label_coordinates, filtered_boxes_elem
|
487 |
+
|
488 |
+
|
489 |
+
def get_xywh(input):
|
490 |
+
x, y, w, h = input[0][0], input[0][1], input[2][0] - input[0][0], input[2][1] - input[0][1]
|
491 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
492 |
+
return x, y, w, h
|
493 |
+
|
494 |
+
def get_xyxy(input):
|
495 |
+
x, y, xp, yp = input[0][0], input[0][1], input[2][0], input[2][1]
|
496 |
+
x, y, xp, yp = int(x), int(y), int(xp), int(yp)
|
497 |
+
return x, y, xp, yp
|
498 |
+
|
499 |
+
def get_xywh_yolo(input):
|
500 |
+
x, y, w, h = input[0], input[1], input[2] - input[0], input[3] - input[1]
|
501 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
502 |
+
return x, y, w, h
|
503 |
+
|
504 |
+
def check_ocr_box(image_source: Union[str, Image.Image], display_img = True, output_bb_format='xywh', goal_filtering=None, easyocr_args=None, use_paddleocr=False):
|
505 |
+
if isinstance(image_source, str):
|
506 |
+
image_source = Image.open(image_source)
|
507 |
+
if image_source.mode == 'RGBA':
|
508 |
+
# Convert RGBA to RGB to avoid alpha channel issues
|
509 |
+
image_source = image_source.convert('RGB')
|
510 |
+
image_np = np.array(image_source)
|
511 |
+
w, h = image_source.size
|
512 |
+
if use_paddleocr:
|
513 |
+
if easyocr_args is None:
|
514 |
+
text_threshold = 0.5
|
515 |
+
else:
|
516 |
+
text_threshold = easyocr_args['text_threshold']
|
517 |
+
result = paddle_ocr.ocr(image_np, cls=False)[0]
|
518 |
+
coord = [item[0] for item in result if item[1][1] > text_threshold]
|
519 |
+
text = [item[1][0] for item in result if item[1][1] > text_threshold]
|
520 |
+
else: # EasyOCR
|
521 |
+
if easyocr_args is None:
|
522 |
+
easyocr_args = {}
|
523 |
+
result = reader.readtext(image_np, **easyocr_args)
|
524 |
+
coord = [item[0] for item in result]
|
525 |
+
text = [item[1] for item in result]
|
526 |
+
if display_img:
|
527 |
+
opencv_img = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
528 |
+
bb = []
|
529 |
+
for item in coord:
|
530 |
+
x, y, a, b = get_xywh(item)
|
531 |
+
bb.append((x, y, a, b))
|
532 |
+
cv2.rectangle(opencv_img, (x, y), (x+a, y+b), (0, 255, 0), 2)
|
533 |
+
# matplotlib expects RGB
|
534 |
+
plt.imshow(cv2.cvtColor(opencv_img, cv2.COLOR_BGR2RGB))
|
535 |
+
else:
|
536 |
+
if output_bb_format == 'xywh':
|
537 |
+
bb = [get_xywh(item) for item in coord]
|
538 |
+
elif output_bb_format == 'xyxy':
|
539 |
+
bb = [get_xyxy(item) for item in coord]
|
540 |
+
return (text, bb), goal_filtering
|