File size: 23,058 Bytes
9c56e37 a75f56e 9c56e37 01cea67 84fa20a d55da55 68ecdd8 c6ae7c8 2322bf2 ceec99c 68ecdd8 5a899c1 68ecdd8 4c1f09b 5a899c1 ceec99c 9c56e37 0dd6bfb cdf6932 84fa20a b7aa921 ceec99c 3252680 e251f43 3252680 ceec99c 2322bf2 ceec99c 2322bf2 3252680 e120912 3252680 e120912 e251f43 3252680 e251f43 3252680 d55da55 2322bf2 ceec99c 84fa20a 9c56e37 2322bf2 9c56e37 84fa20a f5c4a1c 84fa20a d55da55 f5c4a1c d55da55 f5c4a1c d55da55 f5c4a1c d55da55 f5c4a1c d55da55 0dc9ad9 d55da55 68ecdd8 ceec99c 84fa20a 9c56e37 ceec99c 9c56e37 84fa20a 00be5eb 84fa20a f5c4a1c 84fa20a 5a899c1 00be5eb 5a899c1 84fa20a 5a899c1 84fa20a 2322bf2 84fa20a ceec99c 5a899c1 ceec99c 5a899c1 84fa20a 00be5eb 84fa20a ceec99c 5a899c1 84fa20a 5a899c1 00be5eb 84fa20a 5a899c1 9c56e37 2322bf2 01cea67 2322bf2 ceec99c 2322bf2 01cea67 2322bf2 5a899c1 ceec99c 5a899c1 9c56e37 2322bf2 01cea67 9c56e37 01cea67 9c56e37 2322bf2 9c56e37 8f4e742 9c56e37 84fa20a 9c56e37 ceec99c 9c56e37 2322bf2 9c56e37 ceec99c 2322bf2 ceec99c 01cea67 ceec99c 01cea67 ceec99c 01cea67 ceec99c 01cea67 ceec99c 01cea67 ceec99c 84fa20a 01cea67 ceec99c 01cea67 ceec99c 01cea67 ceec99c 01cea67 ceec99c 68ecdd8 01cea67 ceec99c 01cea67 9c56e37 01cea67 ceec99c 01cea67 ceec99c 01cea67 9c56e37 01cea67 9c56e37 01cea67 84fa20a 5a899c1 01cea67 2322bf2 01cea67 2322bf2 01cea67 84fa20a 01cea67 2322bf2 01cea67 9c56e37 b97be1a 2322bf2 ceec99c 84fa20a 9c56e37 5a899c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
import streamlit as st
import pandas as pd
from dotenv import load_dotenv
from datasets import load_dataset
import json
import re
from openai import OpenAI
import os
from config import DATASETS, MODELS
import matplotlib.pyplot as plt
import altair as alt
from concurrent.futures import ThreadPoolExecutor, as_completed
from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type
import threading
from anthropic import Anthropic
import google.generativeai as genai
import hmac
import hashlib
from uuid import uuid4
from datetime import datetime
from huggingface_hub import CommitScheduler, Repository
from pathlib import Path
load_dotenv()
st.set_page_config(page_title="LLM Healthcare Benchmarking", layout="wide")
WRITE_LOCK = threading.Lock()
DATA_DIR = Path("data")
DATA_DIR.mkdir(exist_ok=True)
RESULTS_FILE = DATA_DIR / "results.csv"
scheduler = CommitScheduler(
repo_id=os.getenv("HF_REPO_ID"),
repo_type="dataset",
folder_path=DATA_DIR,
path_in_repo="data",
every=10,
token=os.getenv("HF_TOKEN")
)
def initialize_session_state():
if 'api_configured' not in st.session_state:
st.session_state.api_configured = False
if 'togetherai_client' not in st.session_state:
st.session_state.togetherai_client = None
if 'openai_client' not in st.session_state:
st.session_state.openai_client = None
if 'anthropic_client' not in st.session_state:
st.session_state.anthropic_client = None
if 'all_results' not in st.session_state:
st.session_state.all_results = {}
if 'detailed_model' not in st.session_state:
st.session_state.detailed_model = None
if 'detailed_dataset' not in st.session_state:
st.session_state.detailed_dataset = None
if 'last_evaluated_dataset' not in st.session_state:
st.session_state.last_evaluated_dataset = None
initialize_session_state()
def setup_api_clients():
with st.sidebar:
st.title("API Configuration")
use_stored = st.checkbox("Use the stored API keys")
if use_stored:
username = st.text_input("Username")
password = st.text_input("Password", type="password")
if st.button("Verify Credentials"):
stored_username = os.getenv("STREAMLIT_USERNAME", "")
stored_password = os.getenv("STREAMLIT_PASSWORD", "")
if (hmac.compare_digest(username, stored_username) and
hmac.compare_digest(password, stored_password)):
try:
st.session_state.togetherai_client = OpenAI(
api_key=os.getenv('TOGETHERAI_API_KEY'),
base_url="https://api.together.xyz/v1"
)
st.session_state.openai_client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY')
)
st.session_state.anthropic_client = Anthropic(
api_key=os.getenv('ANTHROPIC_API_KEY')
)
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
st.session_state.api_configured = True
st.success("Successfully configured the API clients with stored keys!")
except Exception as e:
st.error(f"Error initializing API clients: {str(e)}")
st.session_state.api_configured = False
else:
st.error("Invalid credentials. Please try again or use your own API keys.")
st.session_state.api_configured = False
else:
st.subheader("Enter Your API Keys")
togetherai_key = st.text_input("Together AI API Key", type="password", key="togetherai_key")
openai_key = st.text_input("OpenAI API Key", type="password", key="openai_key")
anthropic_key = st.text_input("Anthropic API Key", type="password", key="anthropic_key")
gemini_key = st.text_input("Gemini API Key", type="password", key="gemini_key")
if st.button("Initialize with the provided keys"):
try:
st.session_state.togetherai_client = OpenAI(
api_key=togetherai_key,
base_url="https://api.together.xyz/v1"
)
st.session_state.openai_client = OpenAI(
api_key=openai_key
)
st.session_state.anthropic_client = Anthropic(
api_key=anthropic_key
)
genai.configure(api_key=gemini_key)
st.session_state.api_configured = True
st.success("Successfully configured the API clients with provided keys!")
except Exception as e:
st.error(f"Error initializing API clients: {str(e)}")
st.session_state.api_configured = False
setup_api_clients()
scheduler.start()
MAX_CONCURRENT_CALLS = 5
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
@st.cache_data
def load_dataset_by_name(dataset_name, split="train"):
dataset_config = DATASETS[dataset_name]
dataset = load_dataset(dataset_config["loader"])
df = pd.DataFrame(dataset[split])
df = df[df['choice_type'] == 'single']
questions = []
for _, row in df.iterrows():
options = [row['opa'], row['opb'], row['opc'], row['opd']]
correct_answer = options[row['cop']]
question_dict = {
'question': row['question'],
'options': options,
'correct_answer': correct_answer,
'subject_name': row['subject_name'],
'topic_name': row['topic_name'],
'explanation': row['exp']
}
questions.append(question_dict)
st.write(f"Loaded {len(questions)} single-select questions from `{dataset_name}`")
return questions
@retry(
wait=wait_exponential(multiplier=1, min=4, max=10),
stop=stop_after_attempt(5),
retry=retry_if_exception_type(Exception)
)
def get_model_response(question, options, prompt_template, model_name, clients):
with semaphore:
try:
model_config = MODELS[model_name]
options_text = "\n".join([f"{chr(65+i)}. {opt}" for i, opt in enumerate(options)])
prompt = prompt_template.replace("{question}", question).replace("{options}", options_text)
provider = model_config["provider"]
if provider == "togetherai":
response = clients["togetherai"].chat.completions.create(
model=model_config["model_id"],
messages=[{"role": "user", "content": prompt}]
)
response_text = response.choices[0].message.content.strip()
elif provider == "openai":
response = clients["openai"].chat.completions.create(
model=model_config["model_id"],
messages=[{"role": "user", "content": prompt}]
)
response_text = response.choices[0].message.content.strip()
elif provider == "anthropic":
response = clients["anthropic"].messages.create(
model=model_config["model_id"],
messages=[{"role": "user", "content": prompt}],
max_tokens=4096
)
response_text = response.content[0].text
elif provider == "google":
model = genai.GenerativeModel(
model_name=model_config["model_id"]
)
chat_session = model.start_chat(
history=[]
)
response_text = chat_session.send_message(prompt).text
# Extract JSON from response
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if not json_match:
return f"Error: Invalid response format", response_text
json_response = json.loads(json_match.group(0))
answer = json_response.get('answer', '').strip()
answer = re.sub(r'^[A-D]\.\s*', '', answer)
if not any(answer.lower() == opt.lower() for opt in options):
return f"Error: Answer '{answer}' does not match any options", response_text
return answer, response_text
except Exception as e:
return f"Error: {str(e)}", str(e)
def evaluate_response(model_response, correct_answer):
if model_response.startswith("Error:"):
return False
is_correct = model_response.lower().strip() == correct_answer.lower().strip()
return is_correct
def process_single_evaluation(question, prompt_template, model_name, clients, last_evaluated_dataset):
answer, response_text = get_model_response(
question['question'],
question['options'],
prompt_template,
model_name,
clients
)
is_correct = evaluate_response(answer, question['correct_answer'])
result = {
'dataset': last_evaluated_dataset,
'model': model_name,
'question': question['question'],
'correct_answer': question['correct_answer'],
'subject': question['subject_name'],
'options': ' | '.join(question['options']),
'model_response': answer,
'is_correct': is_correct,
'explanation': question['explanation'],
'timestamp': datetime.utcnow().isoformat()
}
with WRITE_LOCK:
if RESULTS_FILE.exists():
existing_df = pd.read_csv(RESULTS_FILE)
updated_df = existing_df.append(result, ignore_index=True)
else:
updated_df = pd.DataFrame([result])
updated_df.to_csv(RESULTS_FILE, index=False)
return result
def process_evaluations_concurrently(questions, prompt_template, models_to_evaluate, progress_callback, clients, last_evaluated_dataset):
results = []
total_iterations = len(models_to_evaluate) * len(questions)
current_iteration = 0
if RESULTS_FILE.exists():
existing_df = pd.read_csv(RESULTS_FILE)
completed = set(zip(existing_df['model'], existing_df['question']))
else:
completed = set()
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
future_to_params = {}
for model_name in models_to_evaluate:
for question in questions:
if (model_name, question['question']) in completed:
current_iteration += 1
progress_callback(current_iteration, total_iterations)
continue # Skip already completed evaluations
future = executor.submit(
process_single_evaluation,
question,
prompt_template,
model_name,
clients,
last_evaluated_dataset
)
future_to_params[future] = (model_name, question)
for future in as_completed(future_to_params):
result = future.result()
results.append(result)
current_iteration += 1
progress_callback(current_iteration, total_iterations)
return results
def main():
if 'all_results' not in st.session_state:
st.session_state.all_results = {}
st.session_state.last_evaluated_dataset = None
if RESULTS_FILE.exists():
existing_df = pd.read_csv(RESULTS_FILE)
all_results = {}
for _, row in existing_df.iterrows():
model = row['model']
result = row.to_dict()
if model not in all_results:
all_results[model] = []
all_results[model].append(result)
st.session_state.all_results = all_results
st.session_state.last_evaluated_dataset = existing_df['dataset'].iloc[-1]
st.info(f"Loaded existing results from `{RESULTS_FILE}`.")
else:
st.session_state.all_results = {}
st.session_state.last_evaluated_dataset = None
st.info(f"No existing results found. Ready to start fresh.")
with st.sidebar:
if st.button("Reset Results"):
if RESULTS_FILE.exists():
try:
RESULTS_FILE.unlink()
st.session_state.all_results = {}
st.session_state.last_evaluated_dataset = None
st.success("Results have been reset.")
except Exception as e:
st.error(f"Error deleting file: {str(e)}")
else:
st.info("No results to reset.")
col1, col2 = st.columns(2)
with col1:
selected_dataset = st.selectbox(
"Select Dataset",
options=list(DATASETS.keys()),
help="Choose the dataset to evaluate on"
)
with col2:
selected_models = st.multiselect(
"Select Model(s)",
options=list(MODELS.keys()),
default=[list(MODELS.keys())[0]],
help="Choose one or more models to evaluate."
)
models_to_evaluate = selected_models
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
Question: {question}
Options:
{options}
## Output Format:
Please provide your answer in JSON format that contains an "answer" field.
You may include any additional fields in your JSON response that you find relevant, such as:
- "choice reasoning": your detailed reasoning
- "elimination reasoning": why you ruled out other options
Example response format:
{
"answer": "exact option text here(e.g., A. xxx, B. xxx, C. xxx)",
"choice reasoning": "your detailed reasoning here",
"elimination reasoning": "why you ruled out other options"
}
Important:
- Only the "answer" field will be used for evaluation
- Ensure your response is in valid JSON format'''
# Customize Prompt Template
col1, col2 = st.columns([2, 1])
with col1:
prompt_template = st.text_area(
"Customize Prompt Template",
default_prompt,
height=400,
help="Edit the prompt template before starting the evaluation."
)
with col2:
st.markdown("""
### Prompt Variables
- `{question}`: The medical question
- `{options}`: The multiple choice options
""")
# Load Dataset
if st.session_state.api_configured:
with st.spinner("Loading dataset..."):
questions = load_dataset_by_name(selected_dataset)
else:
st.warning("Please configure the API keys in the sidebar to load datasets and proceed.")
questions = []
# Filter by Subject
if questions:
subjects = sorted(list(set(q['subject_name'] for q in questions)))
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
if selected_subject != "All":
questions = [q for q in questions if q['subject_name'] == selected_subject]
# Number of Questions to Evaluate
num_questions = st.number_input(
"Number of questions to evaluate",
min_value=1,
max_value=len(questions),
value=min(10, len(questions)),
step=1
)
# Start Evaluation Button
if st.button("Start Evaluation"):
if not models_to_evaluate:
st.error("Please select at least one model to evaluate.")
else:
with st.spinner("Starting evaluation..."):
selected_questions = questions[:num_questions]
clients = {
"togetherai": st.session_state["togetherai_client"],
"openai": st.session_state["openai_client"],
"anthropic": st.session_state["anthropic_client"]
}
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
progress_container = st.container()
progress_bar = progress_container.progress(0)
status_text = progress_container.empty()
def update_progress(current, total):
progress = current / total
progress_bar.progress(progress)
status_text.text(f"Progress: {current}/{total} evaluations completed")
results = process_evaluations_concurrently(
selected_questions,
prompt_template,
models_to_evaluate,
update_progress,
clients,
last_evaluated_dataset
)
# Update Session State with New Results
all_results = st.session_state.all_results.copy()
for result in results:
model = result.pop('model')
if model not in all_results:
all_results[model] = []
all_results[model].append(result)
st.session_state.all_results = all_results
st.session_state.last_evaluated_dataset = selected_dataset
# Set Default Detailed Model and Dataset if Not Set
if st.session_state.detailed_model is None and all_results:
st.session_state.detailed_model = list(all_results.keys())[0]
if st.session_state.detailed_dataset is None:
st.session_state.detailed_dataset = selected_dataset
st.success("Evaluation completed!")
st.experimental_rerun()
# Display Evaluation Results
if st.session_state.all_results:
st.subheader("Evaluation Results")
model_metrics = {}
for model_name, results in st.session_state.all_results.items():
df = pd.DataFrame(results)
metrics = {
'Accuracy': df['is_correct'].mean(),
}
model_metrics[model_name] = metrics
metrics_df = pd.DataFrame(model_metrics).T.reset_index().rename(columns={'index': 'Model'})
st.subheader("Model Performance Comparison")
accuracy_chart = alt.Chart(
metrics_df
).mark_bar().encode(
x=alt.X('Model:N', title=None),
y=alt.Y('Accuracy:Q', title='Accuracy', scale=alt.Scale(domain=[0, 1])),
color=alt.Color('Model:N', scale=alt.Scale(scheme='blues')),
tooltip=['Model:N', 'Accuracy:Q']
).properties(
height=300,
title={
"text": "Model Accuracy",
"anchor": "middle",
"fontSize": 20
}
).interactive()
st.altair_chart(accuracy_chart, use_container_width=True)
# Display Detailed Results
if st.session_state.all_results:
st.subheader("Detailed Results")
def update_model():
st.session_state.detailed_model = st.session_state.model_select
def update_dataset():
st.session_state.detailed_dataset = st.session_state.dataset_select
col1, col2 = st.columns(2)
with col1:
selected_model_details = st.selectbox(
"Select model",
options=list(st.session_state.all_results.keys()),
key="model_select",
on_change=update_model,
index=list(st.session_state.all_results.keys()).index(st.session_state.detailed_model)
if st.session_state.detailed_model in st.session_state.all_results else 0
)
with col2:
selected_dataset_details = st.selectbox(
"Select dataset",
options=[st.session_state.last_evaluated_dataset] if st.session_state.last_evaluated_dataset else [],
key="dataset_select",
on_change=update_dataset
)
if selected_model_details and selected_model_details in st.session_state.all_results:
results = st.session_state.all_results[selected_model_details]
df = pd.DataFrame(results)
accuracy = df['is_correct'].mean()
st.metric("Accuracy", f"{accuracy:.2%}")
for idx, result in enumerate(results):
with st.expander(f"Question {idx + 1} - {result['subject']}"):
st.write("**Question:**", result['question'])
st.write("**Options:**")
for i, opt in enumerate(result['options'].split(' | ')):
st.write(f"{chr(65+i)}. {opt}")
col1, col2 = st.columns(2)
with col1:
st.write("**Model Response:**")
st.code(result.get('model_response', "N/A"))
with col2:
st.write("**Explanation:**")
st.code(result.get('explanation', "N/A"))
col1, col2 = st.columns(2)
with col1:
st.write("**Correct Answer:**", result['correct_answer'])
st.write("**Model Answer:**", result['model_response'])
with col2:
if result['is_correct']:
st.success("Correct!")
else:
st.error("Incorrect")
st.write("**Timestamp:**", result['timestamp'])
else:
st.info(f"No results available for {selected_model_details} on {selected_dataset_details}. Please run the evaluation first.")
st.markdown("---")
st.subheader("Download Results")
if RESULTS_FILE.exists():
csv_data = RESULTS_FILE.read_text(encoding='utf-8')
st.download_button(
label="Download All Results as CSV",
data=csv_data,
file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
mime="text/csv",
key="download_all_results"
)
else:
st.info("No data available to download.")
if __name__ == "__main__":
main()
|