Update app.py
Browse files
app.py
CHANGED
@@ -18,22 +18,27 @@ import hmac
|
|
18 |
import hashlib
|
19 |
from uuid import uuid4
|
20 |
from datetime import datetime
|
|
|
|
|
21 |
|
22 |
load_dotenv()
|
23 |
|
24 |
st.set_page_config(page_title="LLM Healthcare Benchmarking", layout="wide")
|
25 |
|
26 |
-
|
27 |
WRITE_LOCK = threading.Lock()
|
28 |
-
DATA_DIR = "data"
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def initialize_session_state():
|
39 |
if 'api_configured' not in st.session_state:
|
@@ -54,8 +59,8 @@ def initialize_session_state():
|
|
54 |
st.session_state.last_evaluated_dataset = None
|
55 |
|
56 |
initialize_session_state()
|
57 |
-
def setup_api_clients():
|
58 |
|
|
|
59 |
with st.sidebar:
|
60 |
st.title("API Configuration")
|
61 |
|
@@ -66,8 +71,11 @@ def setup_api_clients():
|
|
66 |
password = st.text_input("Password", type="password")
|
67 |
|
68 |
if st.button("Verify Credentials"):
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
try:
|
72 |
st.session_state.togetherai_client = OpenAI(
|
73 |
api_key=os.getenv('TOGETHERAI_API_KEY'),
|
@@ -79,7 +87,7 @@ def setup_api_clients():
|
|
79 |
st.session_state.anthropic_client = Anthropic(
|
80 |
api_key=os.getenv('ANTHROPIC_API_KEY')
|
81 |
)
|
82 |
-
genai.configure(api_key=os.
|
83 |
|
84 |
st.session_state.api_configured = True
|
85 |
st.success("Successfully configured the API clients with stored keys!")
|
@@ -117,6 +125,10 @@ def setup_api_clients():
|
|
117 |
st.session_state.api_configured = False
|
118 |
|
119 |
setup_api_clients()
|
|
|
|
|
|
|
|
|
120 |
MAX_CONCURRENT_CALLS = 5
|
121 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
122 |
|
@@ -191,6 +203,7 @@ def get_model_response(question, options, prompt_template, model_name, clients):
|
|
191 |
)
|
192 |
response_text = chat_session.send_message(prompt).text
|
193 |
|
|
|
194 |
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
195 |
if not json_match:
|
196 |
return f"Error: Invalid response format", response_text
|
@@ -206,6 +219,7 @@ def get_model_response(question, options, prompt_template, model_name, clients):
|
|
206 |
except Exception as e:
|
207 |
return f"Error: {str(e)}", str(e)
|
208 |
|
|
|
209 |
def evaluate_response(model_response, correct_answer):
|
210 |
if model_response.startswith("Error:"):
|
211 |
return False
|
@@ -233,10 +247,15 @@ def process_single_evaluation(question, prompt_template, model_name, clients, la
|
|
233 |
'explanation': question['explanation'],
|
234 |
'timestamp': datetime.utcnow().isoformat()
|
235 |
}
|
|
|
236 |
with WRITE_LOCK:
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
240 |
|
241 |
return result
|
242 |
|
@@ -245,8 +264,7 @@ def process_evaluations_concurrently(questions, prompt_template, models_to_evalu
|
|
245 |
total_iterations = len(models_to_evaluate) * len(questions)
|
246 |
current_iteration = 0
|
247 |
|
248 |
-
|
249 |
-
if os.path.exists(RESULTS_FILE):
|
250 |
existing_df = pd.read_csv(RESULTS_FILE)
|
251 |
completed = set(zip(existing_df['model'], existing_df['question']))
|
252 |
else:
|
@@ -283,7 +301,7 @@ def main():
|
|
283 |
if 'all_results' not in st.session_state:
|
284 |
st.session_state.all_results = {}
|
285 |
st.session_state.last_evaluated_dataset = None
|
286 |
-
if
|
287 |
existing_df = pd.read_csv(RESULTS_FILE)
|
288 |
all_results = {}
|
289 |
for _, row in existing_df.iterrows():
|
@@ -302,18 +320,14 @@ def main():
|
|
302 |
|
303 |
with st.sidebar:
|
304 |
if st.button("Reset Results"):
|
305 |
-
if
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
st.error(f"Error deleting file {file_path}: {e}")
|
314 |
-
st.session_state.all_results = {}
|
315 |
-
st.session_state.last_evaluated_dataset = None
|
316 |
-
st.success("Results have been reset.")
|
317 |
else:
|
318 |
st.info("No results to reset.")
|
319 |
|
@@ -334,7 +348,6 @@ def main():
|
|
334 |
|
335 |
models_to_evaluate = selected_models
|
336 |
|
337 |
-
|
338 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
339 |
Question: {question}
|
340 |
|
@@ -358,7 +371,7 @@ Important:
|
|
358 |
- Only the "answer" field will be used for evaluation
|
359 |
- Ensure your response is in valid JSON format'''
|
360 |
|
361 |
-
|
362 |
col1, col2 = st.columns([2, 1])
|
363 |
with col1:
|
364 |
prompt_template = st.text_area(
|
@@ -375,74 +388,90 @@ Important:
|
|
375 |
- `{options}`: The multiple choice options
|
376 |
""")
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
384 |
-
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
385 |
-
|
386 |
-
if selected_subject != "All":
|
387 |
-
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
388 |
-
|
389 |
-
|
390 |
-
num_questions = st.number_input("Number of questions to evaluate", min_value=1, max_value=len(questions), value=1, step=1)
|
391 |
-
|
392 |
-
|
393 |
-
if st.button("Start Evaluation"):
|
394 |
-
with st.spinner("Starting evaluation..."):
|
395 |
-
selected_questions = questions[:num_questions]
|
396 |
-
|
397 |
-
|
398 |
-
clients = {
|
399 |
-
"togetherai": st.session_state["togetherai_client"],
|
400 |
-
"openai": st.session_state["openai_client"],
|
401 |
-
"anthropic": st.session_state["anthropic_client"]
|
402 |
-
}
|
403 |
-
|
404 |
-
|
405 |
-
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
|
406 |
-
|
407 |
-
progress_container = st.container()
|
408 |
-
progress_bar = progress_container.progress(0)
|
409 |
-
status_text = progress_container.empty()
|
410 |
-
|
411 |
-
def update_progress(current, total):
|
412 |
-
progress = current / total
|
413 |
-
progress_bar.progress(progress)
|
414 |
-
status_text.text(f"Progress: {current}/{total} evaluations completed")
|
415 |
-
|
416 |
-
results = process_evaluations_concurrently(
|
417 |
-
selected_questions,
|
418 |
-
prompt_template,
|
419 |
-
models_to_evaluate,
|
420 |
-
update_progress,
|
421 |
-
clients,
|
422 |
-
last_evaluated_dataset
|
423 |
-
)
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
st.session_state.detailed_model = list(all_results.keys())[0]
|
437 |
-
if st.session_state.detailed_dataset is None:
|
438 |
-
st.session_state.detailed_dataset = selected_dataset
|
439 |
|
440 |
-
|
441 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
if st.session_state.all_results:
|
444 |
st.subheader("Evaluation Results")
|
445 |
-
|
|
|
446 |
for model_name, results in st.session_state.all_results.items():
|
447 |
df = pd.DataFrame(results)
|
448 |
metrics = {
|
@@ -450,27 +479,28 @@ Important:
|
|
450 |
}
|
451 |
model_metrics[model_name] = metrics
|
452 |
|
453 |
-
metrics_df = pd.DataFrame(model_metrics).T
|
454 |
|
455 |
st.subheader("Model Performance Comparison")
|
456 |
accuracy_chart = alt.Chart(
|
457 |
-
metrics_df
|
458 |
).mark_bar().encode(
|
459 |
-
x=alt.X('
|
460 |
-
y=alt.Y('
|
461 |
-
color=alt.Color('
|
462 |
-
tooltip=['
|
463 |
).properties(
|
464 |
height=300,
|
465 |
title={
|
466 |
"text": "Model Accuracy",
|
467 |
-
"
|
468 |
-
"
|
469 |
-
"dy": 20
|
470 |
}
|
471 |
-
)
|
472 |
|
473 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
|
|
|
|
474 |
if st.session_state.all_results:
|
475 |
st.subheader("Detailed Results")
|
476 |
|
@@ -494,12 +524,12 @@ Important:
|
|
494 |
with col2:
|
495 |
selected_dataset_details = st.selectbox(
|
496 |
"Select dataset",
|
497 |
-
options=[st.session_state.last_evaluated_dataset],
|
498 |
key="dataset_select",
|
499 |
on_change=update_dataset
|
500 |
)
|
501 |
|
502 |
-
if selected_model_details in st.session_state.all_results:
|
503 |
results = st.session_state.all_results[selected_model_details]
|
504 |
df = pd.DataFrame(results)
|
505 |
accuracy = df['is_correct'].mean()
|
@@ -537,21 +567,17 @@ Important:
|
|
537 |
|
538 |
st.markdown("---")
|
539 |
st.subheader("Download Results")
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
data
|
551 |
-
file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
|
552 |
-
mime="text/csv",
|
553 |
-
key="download_all_results"
|
554 |
-
)
|
555 |
|
556 |
if __name__ == "__main__":
|
557 |
main()
|
|
|
18 |
import hashlib
|
19 |
from uuid import uuid4
|
20 |
from datetime import datetime
|
21 |
+
from huggingface_hub import CommitScheduler, Repository
|
22 |
+
from pathlib import Path
|
23 |
|
24 |
load_dotenv()
|
25 |
|
26 |
st.set_page_config(page_title="LLM Healthcare Benchmarking", layout="wide")
|
27 |
|
|
|
28 |
WRITE_LOCK = threading.Lock()
|
29 |
+
DATA_DIR = Path("data")
|
30 |
+
DATA_DIR.mkdir(exist_ok=True)
|
31 |
+
RESULTS_FILE = DATA_DIR / "results.csv"
|
32 |
+
|
33 |
+
|
34 |
+
scheduler = CommitScheduler(
|
35 |
+
repo_id=os.getenv("HF_REPO_ID"),
|
36 |
+
repo_type="dataset",
|
37 |
+
folder_path=DATA_DIR,
|
38 |
+
path_in_repo="data",
|
39 |
+
every=10,
|
40 |
+
token=os.getenv("HF_TOKEN")
|
41 |
+
)
|
42 |
|
43 |
def initialize_session_state():
|
44 |
if 'api_configured' not in st.session_state:
|
|
|
59 |
st.session_state.last_evaluated_dataset = None
|
60 |
|
61 |
initialize_session_state()
|
|
|
62 |
|
63 |
+
def setup_api_clients():
|
64 |
with st.sidebar:
|
65 |
st.title("API Configuration")
|
66 |
|
|
|
71 |
password = st.text_input("Password", type="password")
|
72 |
|
73 |
if st.button("Verify Credentials"):
|
74 |
+
stored_username = os.getenv("STREAMLIT_USERNAME", "")
|
75 |
+
stored_password = os.getenv("STREAMLIT_PASSWORD", "")
|
76 |
+
|
77 |
+
if (hmac.compare_digest(username, stored_username) and
|
78 |
+
hmac.compare_digest(password, stored_password)):
|
79 |
try:
|
80 |
st.session_state.togetherai_client = OpenAI(
|
81 |
api_key=os.getenv('TOGETHERAI_API_KEY'),
|
|
|
87 |
st.session_state.anthropic_client = Anthropic(
|
88 |
api_key=os.getenv('ANTHROPIC_API_KEY')
|
89 |
)
|
90 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
91 |
|
92 |
st.session_state.api_configured = True
|
93 |
st.success("Successfully configured the API clients with stored keys!")
|
|
|
125 |
st.session_state.api_configured = False
|
126 |
|
127 |
setup_api_clients()
|
128 |
+
|
129 |
+
|
130 |
+
scheduler.start()
|
131 |
+
|
132 |
MAX_CONCURRENT_CALLS = 5
|
133 |
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)
|
134 |
|
|
|
203 |
)
|
204 |
response_text = chat_session.send_message(prompt).text
|
205 |
|
206 |
+
# Extract JSON from response
|
207 |
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
208 |
if not json_match:
|
209 |
return f"Error: Invalid response format", response_text
|
|
|
219 |
except Exception as e:
|
220 |
return f"Error: {str(e)}", str(e)
|
221 |
|
222 |
+
|
223 |
def evaluate_response(model_response, correct_answer):
|
224 |
if model_response.startswith("Error:"):
|
225 |
return False
|
|
|
247 |
'explanation': question['explanation'],
|
248 |
'timestamp': datetime.utcnow().isoformat()
|
249 |
}
|
250 |
+
|
251 |
with WRITE_LOCK:
|
252 |
+
if RESULTS_FILE.exists():
|
253 |
+
existing_df = pd.read_csv(RESULTS_FILE)
|
254 |
+
updated_df = existing_df.append(result, ignore_index=True)
|
255 |
+
else:
|
256 |
+
updated_df = pd.DataFrame([result])
|
257 |
+
|
258 |
+
updated_df.to_csv(RESULTS_FILE, index=False)
|
259 |
|
260 |
return result
|
261 |
|
|
|
264 |
total_iterations = len(models_to_evaluate) * len(questions)
|
265 |
current_iteration = 0
|
266 |
|
267 |
+
if RESULTS_FILE.exists():
|
|
|
268 |
existing_df = pd.read_csv(RESULTS_FILE)
|
269 |
completed = set(zip(existing_df['model'], existing_df['question']))
|
270 |
else:
|
|
|
301 |
if 'all_results' not in st.session_state:
|
302 |
st.session_state.all_results = {}
|
303 |
st.session_state.last_evaluated_dataset = None
|
304 |
+
if RESULTS_FILE.exists():
|
305 |
existing_df = pd.read_csv(RESULTS_FILE)
|
306 |
all_results = {}
|
307 |
for _, row in existing_df.iterrows():
|
|
|
320 |
|
321 |
with st.sidebar:
|
322 |
if st.button("Reset Results"):
|
323 |
+
if RESULTS_FILE.exists():
|
324 |
+
try:
|
325 |
+
RESULTS_FILE.unlink()
|
326 |
+
st.session_state.all_results = {}
|
327 |
+
st.session_state.last_evaluated_dataset = None
|
328 |
+
st.success("Results have been reset.")
|
329 |
+
except Exception as e:
|
330 |
+
st.error(f"Error deleting file: {str(e)}")
|
|
|
|
|
|
|
|
|
331 |
else:
|
332 |
st.info("No results to reset.")
|
333 |
|
|
|
348 |
|
349 |
models_to_evaluate = selected_models
|
350 |
|
|
|
351 |
default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
|
352 |
Question: {question}
|
353 |
|
|
|
371 |
- Only the "answer" field will be used for evaluation
|
372 |
- Ensure your response is in valid JSON format'''
|
373 |
|
374 |
+
# Customize Prompt Template
|
375 |
col1, col2 = st.columns([2, 1])
|
376 |
with col1:
|
377 |
prompt_template = st.text_area(
|
|
|
388 |
- `{options}`: The multiple choice options
|
389 |
""")
|
390 |
|
391 |
+
# Load Dataset
|
392 |
+
if st.session_state.api_configured:
|
393 |
+
with st.spinner("Loading dataset..."):
|
394 |
+
questions = load_dataset_by_name(selected_dataset)
|
395 |
+
else:
|
396 |
+
st.warning("Please configure the API keys in the sidebar to load datasets and proceed.")
|
397 |
+
questions = []
|
398 |
|
399 |
+
# Filter by Subject
|
400 |
+
if questions:
|
401 |
+
subjects = sorted(list(set(q['subject_name'] for q in questions)))
|
402 |
+
selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
+
if selected_subject != "All":
|
405 |
+
questions = [q for q in questions if q['subject_name'] == selected_subject]
|
406 |
+
|
407 |
+
# Number of Questions to Evaluate
|
408 |
+
num_questions = st.number_input(
|
409 |
+
"Number of questions to evaluate",
|
410 |
+
min_value=1,
|
411 |
+
max_value=len(questions),
|
412 |
+
value=min(10, len(questions)),
|
413 |
+
step=1
|
414 |
+
)
|
|
|
|
|
|
|
415 |
|
416 |
+
# Start Evaluation Button
|
417 |
+
if st.button("Start Evaluation"):
|
418 |
+
if not models_to_evaluate:
|
419 |
+
st.error("Please select at least one model to evaluate.")
|
420 |
+
else:
|
421 |
+
with st.spinner("Starting evaluation..."):
|
422 |
+
selected_questions = questions[:num_questions]
|
423 |
+
|
424 |
+
clients = {
|
425 |
+
"togetherai": st.session_state["togetherai_client"],
|
426 |
+
"openai": st.session_state["openai_client"],
|
427 |
+
"anthropic": st.session_state["anthropic_client"]
|
428 |
+
}
|
429 |
+
|
430 |
+
last_evaluated_dataset = st.session_state.last_evaluated_dataset if st.session_state.last_evaluated_dataset else selected_dataset
|
431 |
|
432 |
+
progress_container = st.container()
|
433 |
+
progress_bar = progress_container.progress(0)
|
434 |
+
status_text = progress_container.empty()
|
435 |
+
|
436 |
+
def update_progress(current, total):
|
437 |
+
progress = current / total
|
438 |
+
progress_bar.progress(progress)
|
439 |
+
status_text.text(f"Progress: {current}/{total} evaluations completed")
|
440 |
+
|
441 |
+
results = process_evaluations_concurrently(
|
442 |
+
selected_questions,
|
443 |
+
prompt_template,
|
444 |
+
models_to_evaluate,
|
445 |
+
update_progress,
|
446 |
+
clients,
|
447 |
+
last_evaluated_dataset
|
448 |
+
)
|
449 |
+
|
450 |
+
# Update Session State with New Results
|
451 |
+
all_results = st.session_state.all_results.copy()
|
452 |
+
for result in results:
|
453 |
+
model = result.pop('model')
|
454 |
+
if model not in all_results:
|
455 |
+
all_results[model] = []
|
456 |
+
all_results[model].append(result)
|
457 |
+
|
458 |
+
st.session_state.all_results = all_results
|
459 |
+
st.session_state.last_evaluated_dataset = selected_dataset
|
460 |
+
|
461 |
+
# Set Default Detailed Model and Dataset if Not Set
|
462 |
+
if st.session_state.detailed_model is None and all_results:
|
463 |
+
st.session_state.detailed_model = list(all_results.keys())[0]
|
464 |
+
if st.session_state.detailed_dataset is None:
|
465 |
+
st.session_state.detailed_dataset = selected_dataset
|
466 |
+
|
467 |
+
st.success("Evaluation completed!")
|
468 |
+
st.experimental_rerun()
|
469 |
+
|
470 |
+
# Display Evaluation Results
|
471 |
if st.session_state.all_results:
|
472 |
st.subheader("Evaluation Results")
|
473 |
+
model_metrics = {}
|
474 |
+
|
475 |
for model_name, results in st.session_state.all_results.items():
|
476 |
df = pd.DataFrame(results)
|
477 |
metrics = {
|
|
|
479 |
}
|
480 |
model_metrics[model_name] = metrics
|
481 |
|
482 |
+
metrics_df = pd.DataFrame(model_metrics).T.reset_index().rename(columns={'index': 'Model'})
|
483 |
|
484 |
st.subheader("Model Performance Comparison")
|
485 |
accuracy_chart = alt.Chart(
|
486 |
+
metrics_df
|
487 |
).mark_bar().encode(
|
488 |
+
x=alt.X('Model:N', title=None),
|
489 |
+
y=alt.Y('Accuracy:Q', title='Accuracy', scale=alt.Scale(domain=[0, 1])),
|
490 |
+
color=alt.Color('Model:N', scale=alt.Scale(scheme='blues')),
|
491 |
+
tooltip=['Model:N', 'Accuracy:Q']
|
492 |
).properties(
|
493 |
height=300,
|
494 |
title={
|
495 |
"text": "Model Accuracy",
|
496 |
+
"anchor": "middle",
|
497 |
+
"fontSize": 20
|
|
|
498 |
}
|
499 |
+
).interactive()
|
500 |
|
501 |
st.altair_chart(accuracy_chart, use_container_width=True)
|
502 |
+
|
503 |
+
# Display Detailed Results
|
504 |
if st.session_state.all_results:
|
505 |
st.subheader("Detailed Results")
|
506 |
|
|
|
524 |
with col2:
|
525 |
selected_dataset_details = st.selectbox(
|
526 |
"Select dataset",
|
527 |
+
options=[st.session_state.last_evaluated_dataset] if st.session_state.last_evaluated_dataset else [],
|
528 |
key="dataset_select",
|
529 |
on_change=update_dataset
|
530 |
)
|
531 |
|
532 |
+
if selected_model_details and selected_model_details in st.session_state.all_results:
|
533 |
results = st.session_state.all_results[selected_model_details]
|
534 |
df = pd.DataFrame(results)
|
535 |
accuracy = df['is_correct'].mean()
|
|
|
567 |
|
568 |
st.markdown("---")
|
569 |
st.subheader("Download Results")
|
570 |
+
if RESULTS_FILE.exists():
|
571 |
+
csv_data = RESULTS_FILE.read_text(encoding='utf-8')
|
572 |
+
st.download_button(
|
573 |
+
label="Download All Results as CSV",
|
574 |
+
data=csv_data,
|
575 |
+
file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
|
576 |
+
mime="text/csv",
|
577 |
+
key="download_all_results"
|
578 |
+
)
|
579 |
+
else:
|
580 |
+
st.info("No data available to download.")
|
|
|
|
|
|
|
|
|
581 |
|
582 |
if __name__ == "__main__":
|
583 |
main()
|