Spaces:
Runtime error
Runtime error
""" ResNeSt Models | |
Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 | |
Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang | |
Modified for torchscript compat, and consistency with timm by Ross Wightman | |
""" | |
import torch | |
from torch import nn | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg | |
from .layers import SplitAttn | |
from .registry import register_model | |
from .resnet import ResNet | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), | |
'crop_pct': 0.875, 'interpolation': 'bilinear', | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'conv1.0', 'classifier': 'fc', | |
**kwargs | |
} | |
default_cfgs = { | |
'resnest14d': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'), | |
'resnest26d': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'), | |
'resnest50d': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth'), | |
'resnest101e': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth', | |
input_size=(3, 256, 256), pool_size=(8, 8)), | |
'resnest200e': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth', | |
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'), | |
'resnest269e': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth', | |
input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'), | |
'resnest50d_4s2x40d': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth', | |
interpolation='bicubic'), | |
'resnest50d_1s4x24d': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth', | |
interpolation='bicubic') | |
} | |
class ResNestBottleneck(nn.Module): | |
"""ResNet Bottleneck | |
""" | |
# pylint: disable=unused-argument | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, | |
radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False, | |
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, | |
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): | |
super(ResNestBottleneck, self).__init__() | |
assert reduce_first == 1 # not supported | |
assert attn_layer is None # not supported | |
assert aa_layer is None # TODO not yet supported | |
assert drop_path is None # TODO not yet supported | |
group_width = int(planes * (base_width / 64.)) * cardinality | |
first_dilation = first_dilation or dilation | |
if avd and (stride > 1 or is_first): | |
avd_stride = stride | |
stride = 1 | |
else: | |
avd_stride = 0 | |
self.radix = radix | |
self.drop_block = drop_block | |
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) | |
self.bn1 = norm_layer(group_width) | |
self.act1 = act_layer(inplace=True) | |
self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None | |
if self.radix >= 1: | |
self.conv2 = SplitAttn( | |
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, | |
dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_block=drop_block) | |
self.bn2 = nn.Identity() | |
self.act2 = nn.Identity() | |
else: | |
self.conv2 = nn.Conv2d( | |
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation, | |
dilation=first_dilation, groups=cardinality, bias=False) | |
self.bn2 = norm_layer(group_width) | |
self.act2 = act_layer(inplace=True) | |
self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None | |
self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = norm_layer(planes*4) | |
self.act3 = act_layer(inplace=True) | |
self.downsample = downsample | |
def zero_init_last_bn(self): | |
nn.init.zeros_(self.bn3.weight) | |
def forward(self, x): | |
shortcut = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
if self.drop_block is not None: | |
out = self.drop_block(out) | |
out = self.act1(out) | |
if self.avd_first is not None: | |
out = self.avd_first(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.drop_block is not None: | |
out = self.drop_block(out) | |
out = self.act2(out) | |
if self.avd_last is not None: | |
out = self.avd_last(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.drop_block is not None: | |
out = self.drop_block(out) | |
if self.downsample is not None: | |
shortcut = self.downsample(x) | |
out += shortcut | |
out = self.act3(out) | |
return out | |
def _create_resnest(variant, pretrained=False, **kwargs): | |
return build_model_with_cfg( | |
ResNet, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
**kwargs) | |
def resnest14d(pretrained=False, **kwargs): | |
""" ResNeSt-14d model. Weights ported from GluonCV. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[1, 1, 1, 1], | |
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest14d', pretrained=pretrained, **model_kwargs) | |
def resnest26d(pretrained=False, **kwargs): | |
""" ResNeSt-26d model. Weights ported from GluonCV. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[2, 2, 2, 2], | |
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest26d', pretrained=pretrained, **model_kwargs) | |
def resnest50d(pretrained=False, **kwargs): | |
""" ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955 | |
Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 4, 6, 3], | |
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest50d', pretrained=pretrained, **model_kwargs) | |
def resnest101e(pretrained=False, **kwargs): | |
""" ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955 | |
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 4, 23, 3], | |
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest101e', pretrained=pretrained, **model_kwargs) | |
def resnest200e(pretrained=False, **kwargs): | |
""" ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955 | |
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 24, 36, 3], | |
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest200e', pretrained=pretrained, **model_kwargs) | |
def resnest269e(pretrained=False, **kwargs): | |
""" ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955 | |
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample. | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 30, 48, 8], | |
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1, | |
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs) | |
return _create_resnest('resnest269e', pretrained=pretrained, **model_kwargs) | |
def resnest50d_4s2x40d(pretrained=False, **kwargs): | |
"""ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 4, 6, 3], | |
stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2, | |
block_args=dict(radix=4, avd=True, avd_first=True), **kwargs) | |
return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **model_kwargs) | |
def resnest50d_1s4x24d(pretrained=False, **kwargs): | |
"""ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md | |
""" | |
model_kwargs = dict( | |
block=ResNestBottleneck, layers=[3, 4, 6, 3], | |
stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4, | |
block_args=dict(radix=1, avd=True, avd_first=True), **kwargs) | |
return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **model_kwargs) | |