Spaces:
Runtime error
Runtime error
File size: 10,092 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
""" ResNeSt Models
Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955
Adapted from original PyTorch impl w/ weights at https://github.com/zhanghang1989/ResNeSt by Hang Zhang
Modified for torchscript compat, and consistency with timm by Ross Wightman
"""
import torch
from torch import nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import SplitAttn
from .registry import register_model
from .resnet import ResNet
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'conv1.0', 'classifier': 'fc',
**kwargs
}
default_cfgs = {
'resnest14d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'),
'resnest26d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'),
'resnest50d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth'),
'resnest101e': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth',
input_size=(3, 256, 256), pool_size=(8, 8)),
'resnest200e': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth',
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=0.909, interpolation='bicubic'),
'resnest269e': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth',
input_size=(3, 416, 416), pool_size=(13, 13), crop_pct=0.928, interpolation='bicubic'),
'resnest50d_4s2x40d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth',
interpolation='bicubic'),
'resnest50d_1s4x24d': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth',
interpolation='bicubic')
}
class ResNestBottleneck(nn.Module):
"""ResNet Bottleneck
"""
# pylint: disable=unused-argument
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,
radix=1, cardinality=1, base_width=64, avd=False, avd_first=False, is_first=False,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
super(ResNestBottleneck, self).__init__()
assert reduce_first == 1 # not supported
assert attn_layer is None # not supported
assert aa_layer is None # TODO not yet supported
assert drop_path is None # TODO not yet supported
group_width = int(planes * (base_width / 64.)) * cardinality
first_dilation = first_dilation or dilation
if avd and (stride > 1 or is_first):
avd_stride = stride
stride = 1
else:
avd_stride = 0
self.radix = radix
self.drop_block = drop_block
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1 = norm_layer(group_width)
self.act1 = act_layer(inplace=True)
self.avd_first = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and avd_first else None
if self.radix >= 1:
self.conv2 = SplitAttn(
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, groups=cardinality, radix=radix, norm_layer=norm_layer, drop_block=drop_block)
self.bn2 = nn.Identity()
self.act2 = nn.Identity()
else:
self.conv2 = nn.Conv2d(
group_width, group_width, kernel_size=3, stride=stride, padding=first_dilation,
dilation=first_dilation, groups=cardinality, bias=False)
self.bn2 = norm_layer(group_width)
self.act2 = act_layer(inplace=True)
self.avd_last = nn.AvgPool2d(3, avd_stride, padding=1) if avd_stride > 0 and not avd_first else None
self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes*4)
self.act3 = act_layer(inplace=True)
self.downsample = downsample
def zero_init_last_bn(self):
nn.init.zeros_(self.bn3.weight)
def forward(self, x):
shortcut = x
out = self.conv1(x)
out = self.bn1(out)
if self.drop_block is not None:
out = self.drop_block(out)
out = self.act1(out)
if self.avd_first is not None:
out = self.avd_first(out)
out = self.conv2(out)
out = self.bn2(out)
if self.drop_block is not None:
out = self.drop_block(out)
out = self.act2(out)
if self.avd_last is not None:
out = self.avd_last(out)
out = self.conv3(out)
out = self.bn3(out)
if self.drop_block is not None:
out = self.drop_block(out)
if self.downsample is not None:
shortcut = self.downsample(x)
out += shortcut
out = self.act3(out)
return out
def _create_resnest(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
ResNet, variant, pretrained,
default_cfg=default_cfgs[variant],
**kwargs)
@register_model
def resnest14d(pretrained=False, **kwargs):
""" ResNeSt-14d model. Weights ported from GluonCV.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[1, 1, 1, 1],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest14d', pretrained=pretrained, **model_kwargs)
@register_model
def resnest26d(pretrained=False, **kwargs):
""" ResNeSt-26d model. Weights ported from GluonCV.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[2, 2, 2, 2],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest26d', pretrained=pretrained, **model_kwargs)
@register_model
def resnest50d(pretrained=False, **kwargs):
""" ResNeSt-50d model. Matches paper ResNeSt-50 model, https://arxiv.org/abs/2004.08955
Since this codebase supports all possible variations, 'd' for deep stem, stem_width 32, avg in downsample.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest50d', pretrained=pretrained, **model_kwargs)
@register_model
def resnest101e(pretrained=False, **kwargs):
""" ResNeSt-101e model. Matches paper ResNeSt-101 model, https://arxiv.org/abs/2004.08955
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 23, 3],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest101e', pretrained=pretrained, **model_kwargs)
@register_model
def resnest200e(pretrained=False, **kwargs):
""" ResNeSt-200e model. Matches paper ResNeSt-200 model, https://arxiv.org/abs/2004.08955
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 24, 36, 3],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest200e', pretrained=pretrained, **model_kwargs)
@register_model
def resnest269e(pretrained=False, **kwargs):
""" ResNeSt-269e model. Matches paper ResNeSt-269 model, https://arxiv.org/abs/2004.08955
Since this codebase supports all possible variations, 'e' for deep stem, stem_width 64, avg in downsample.
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 30, 48, 8],
stem_type='deep', stem_width=64, avg_down=True, base_width=64, cardinality=1,
block_args=dict(radix=2, avd=True, avd_first=False), **kwargs)
return _create_resnest('resnest269e', pretrained=pretrained, **model_kwargs)
@register_model
def resnest50d_4s2x40d(pretrained=False, **kwargs):
"""ResNeSt-50 4s2x40d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=40, cardinality=2,
block_args=dict(radix=4, avd=True, avd_first=True), **kwargs)
return _create_resnest('resnest50d_4s2x40d', pretrained=pretrained, **model_kwargs)
@register_model
def resnest50d_1s4x24d(pretrained=False, **kwargs):
"""ResNeSt-50 1s4x24d from https://github.com/zhanghang1989/ResNeSt/blob/master/ablation.md
"""
model_kwargs = dict(
block=ResNestBottleneck, layers=[3, 4, 6, 3],
stem_type='deep', stem_width=32, avg_down=True, base_width=24, cardinality=4,
block_args=dict(radix=1, avd=True, avd_first=True), **kwargs)
return _create_resnest('resnest50d_1s4x24d', pretrained=pretrained, **model_kwargs)
|