Spaces:
Runtime error
Runtime error
File size: 1,580 Bytes
53f1934 9073835 6bb7168 24c0e03 dd1a5fd 6bb7168 9073835 4b236a5 53f0238 53f1934 e551ca5 4429686 53f1934 9073835 771e9d0 0ef2ca5 dd1a5fd 82fae2a 2b8e801 dd1a5fd 2b8e801 dd1a5fd 82fae2a dd1a5fd 4429686 2b8e801 4429686 2522810 53f1934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from HebEMO import HebEMO
from transformers import pipeline
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
from spider_plot import spider_plot
# @st.cache
HebEMO_model = HebEMO()
x = st.slider("Select a value")
st.write(x, "squared is", x * x)
st.title("Find sentiment")
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
sent = st.text_area("Text", "write here", height = 20)
# interact(HebEMO_model.hebemo, text='ืืืืื ืืคืื ืืืืืฉืจื', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True, plot=False)
hebEMO = pd.DataFrame()
for emo in hebEMO_df.columns[1::2]:
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
st.write (hebEMO)
plot= st.checkbox('Plot?')
if plot:
fig, ax = spider_plot(hebEMO)
st.pyplot(ax)
# fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
# color="variable",
# template="ggplot2",
# )
# st.plotly_chart(fig, use_container_width=True)
|