File size: 1,580 Bytes
53f1934
9073835
 
6bb7168
24c0e03
dd1a5fd
6bb7168
9073835
4b236a5
53f0238
53f1934
 
e551ca5
 
 
4429686
53f1934
9073835
 
771e9d0
0ef2ca5
dd1a5fd
82fae2a
2b8e801
 
 
 
dd1a5fd
2b8e801
dd1a5fd
 
82fae2a
dd1a5fd
4429686
 
 
 
2b8e801
4429686
2522810
 
53f1934
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from HebEMO import HebEMO
from transformers import pipeline
import streamlit as st
import matplotlib.pyplot as plt
import pandas as pd
from spider_plot import spider_plot


# @st.cache
HebEMO_model = HebEMO()


x = st.slider("Select a value")
st.write(x, "squared is", x * x)



st.title("Find sentiment")
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
sent = st.text_area("Text", "write here", height = 20)
# interact(HebEMO_model.hebemo, text='ื”ื—ื™ื™ื ื™ืคื™ื ื•ืžืื•ืฉืจื™', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)

hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True, plot=False)
hebEMO = pd.DataFrame()
for emo in hebEMO_df.columns[1::2]:
    hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))

st.write (hebEMO)

plot= st.checkbox('Plot?')
if plot:
    fig, ax = spider_plot(hebEMO)
    st.pyplot(ax)
# fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
#                       color="variable", 
#                       template="ggplot2",
#                      )

# st.plotly_chart(fig, use_container_width=True)