Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from transformers import pipeline
|
|
3 |
import streamlit as st
|
4 |
import matplotlib.pyplot as plt
|
5 |
import pandas as pd
|
6 |
-
|
7 |
|
8 |
|
9 |
# @st.cache
|
@@ -19,19 +19,24 @@ st.title("Find sentiment")
|
|
19 |
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
|
20 |
sent = st.text_area("Text", "write here", height = 20)
|
21 |
# interact(HebEMO_model.hebemo, text='讛讞讬讬诐 讬驻讬诐 讜诪讗讜砖专讬', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
|
22 |
-
|
|
|
23 |
hebEMO = pd.DataFrame()
|
24 |
for emo in hebEMO_df.columns[1::2]:
|
25 |
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
|
26 |
|
|
|
27 |
|
|
|
|
|
|
|
|
|
28 |
# fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
|
29 |
# color="variable",
|
30 |
# template="ggplot2",
|
31 |
# )
|
32 |
|
33 |
# st.plotly_chart(fig, use_container_width=True)
|
34 |
-
st.write (hebEMO)
|
35 |
|
36 |
|
37 |
|
|
|
3 |
import streamlit as st
|
4 |
import matplotlib.pyplot as plt
|
5 |
import pandas as pd
|
6 |
+
from spider_plot import spider_plot
|
7 |
|
8 |
|
9 |
# @st.cache
|
|
|
19 |
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
|
20 |
sent = st.text_area("Text", "write here", height = 20)
|
21 |
# interact(HebEMO_model.hebemo, text='讛讞讬讬诐 讬驻讬诐 讜诪讗讜砖专讬', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
|
22 |
+
|
23 |
+
hebEMO_df = HebEMO_model.hebemo(sent, read_lines=True plot=False)
|
24 |
hebEMO = pd.DataFrame()
|
25 |
for emo in hebEMO_df.columns[1::2]:
|
26 |
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
|
27 |
|
28 |
+
st.write (hebEMO)
|
29 |
|
30 |
+
plot= st.checkbox('Plot?')
|
31 |
+
if plot:
|
32 |
+
ax = spider_plot(hebEMO)
|
33 |
+
st.pyplot(ax)
|
34 |
# fig = px.bar_polar(hebEMO.melt(), r="value", theta="variable",
|
35 |
# color="variable",
|
36 |
# template="ggplot2",
|
37 |
# )
|
38 |
|
39 |
# st.plotly_chart(fig, use_container_width=True)
|
|
|
40 |
|
41 |
|
42 |
|