Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import matplotlib.pyplot as plt | |
import spaces | |
# Load TrOCR model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten") | |
def preprocess_image(image): | |
# Convert image to RGB | |
image = image.convert("RGB") | |
# Resize and normalize the image to [0, 1] | |
transform = transforms.Compose([ | |
transforms.Resize((384, 384)), # Resize to the expected input size | |
transforms.ToTensor(), # Convert to tensor and scale to [0, 1] | |
]) | |
pixel_values = transform(image).unsqueeze(0) # Add batch dimension | |
return pixel_values | |
def visualize_image(pixel_values): | |
# Convert tensor to numpy array and permute dimensions for visualization | |
image = pixel_values.squeeze().permute(1, 2, 0).numpy() | |
plt.imshow(image) | |
plt.title("Preprocessed Image") | |
plt.show() | |
def recognize_text(image): | |
try: | |
# Preprocess the image | |
pixel_values = preprocess_image(image) | |
print("Image preprocessed. Pixel values shape:", pixel_values.shape) | |
# Visualize preprocessed image | |
visualize_image(pixel_values) | |
# Generate text from the image | |
with torch.no_grad(): | |
generated_ids = model.generate(pixel_values) | |
print("Generated IDs:", generated_ids) | |
# Decode the generated IDs to text | |
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
print("Decoded text:", text) | |
return text | |
except Exception as e: | |
print(f"Error: {str(e)}") | |
return f"Error: {str(e)}" | |
# Gradio UI | |
note = gr.Interface( | |
fn=recognize_text, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Handwritten Note to Digital Text", | |
description="Upload an image of handwritten text, and the AI will convert it to digital text." | |
) | |
note.launch() |