File size: 2,084 Bytes
44342ba
 
 
fd11c5a
194e156
3fa52bd
fb1de0f
44342ba
 
d4bf218
 
44342ba
194e156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb1de0f
44342ba
817e54c
fd11c5a
194e156
fd11c5a
 
3fa52bd
194e156
3fa52bd
fd11c5a
194e156
fd11c5a
 
 
 
817e54c
fd11c5a
 
817e54c
 
fd11c5a
817e54c
44342ba
 
 
 
 
 
 
 
 
 
817e54c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import torch
from torchvision import transforms
import matplotlib.pyplot as plt
import spaces

# Load TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")

def preprocess_image(image):
    # Convert image to RGB
    image = image.convert("RGB")
    
    # Resize and normalize the image to [0, 1]
    transform = transforms.Compose([
        transforms.Resize((384, 384)),  # Resize to the expected input size
        transforms.ToTensor(),          # Convert to tensor and scale to [0, 1]
    ])
    pixel_values = transform(image).unsqueeze(0)  # Add batch dimension
    return pixel_values

def visualize_image(pixel_values):
    # Convert tensor to numpy array and permute dimensions for visualization
    image = pixel_values.squeeze().permute(1, 2, 0).numpy()
    plt.imshow(image)
    plt.title("Preprocessed Image")
    plt.show()

@spaces.GPU
def recognize_text(image):
    try:
        # Preprocess the image
        pixel_values = preprocess_image(image)
        print("Image preprocessed. Pixel values shape:", pixel_values.shape)

        # Visualize preprocessed image
        visualize_image(pixel_values)

        # Generate text from the image
        with torch.no_grad():
            generated_ids = model.generate(pixel_values)
            print("Generated IDs:", generated_ids)

        # Decode the generated IDs to text
        text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        print("Decoded text:", text)

        return text
    except Exception as e:
        print(f"Error: {str(e)}")
        return f"Error: {str(e)}"

# Gradio UI
note = gr.Interface(
    fn=recognize_text,
    inputs=gr.Image(type="pil"),
    outputs="text",
    title="Handwritten Note to Digital Text",
    description="Upload an image of handwritten text, and the AI will convert it to digital text."
)

note.launch()