File size: 2,961 Bytes
0fd8a0b
44342ba
fd11c5a
0fd8a0b
fb1de0f
44342ba
0fd8a0b
 
 
 
 
 
 
44342ba
fb1de0f
0fd8a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471fe5d
44342ba
0fd8a0b
471fe5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44342ba
 
0fd8a0b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from transformers import MllamaForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
import gradio as gr
import spaces

# Initialize model and processor
ocr = "unsloth/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
    ocr,
    torch_dtype=torch.bfloat16
).to("cuda")
processor = AutoProcessor.from_pretrained(ocr)

@spaces.GPU
def extract_text(image):
    # Convert image to RGB
    image = Image.open(image).convert("RGB")
    
    # Create message structure
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
                {"type": "image"}
            ]
        }
    ]
    
    # Process input
    texts = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")

    
    # Generate output
    outputs = model.generate(**inputs, max_new_tokens=250)
    result = processor.decode(outputs[0], skip_special_tokens=True)

    print(result)
    
    # Clean up the output to remove the prompt and assistant text
    if "assistant" in result.lower():
        result = result[result.lower().find("assistant") + len("assistant"):].strip()
    
    # Remove any remaining conversation markers
    result = result.replace("user", "").replace("Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output", "").strip()

    print(result)
    
    return result

# Create Gradio interface with a more colorful and engaging UI
note = gr.Interface(
    fn=extract_text,
    inputs=gr.Image(type="filepath", label="📷 Upload Image"),
    outputs=gr.Textbox(label="📝 Extracted Text"),
    title="🖋️ Handwritten Text Extractor 🖋️",
    description="""<div style="background-color: #f0f8ff; padding: 20px; border-radius: 10px;">
                    <h2 style="color: #333;">✨ Welcome to the Handwritten Text Extractor! ✨</h2>
                    <p style="color: #555;">Upload an image containing handwritten text, and let the magic happen! 🎩✨</p>
                    <p style="color: #555;">📌 <strong>Instructions:</strong></p>
                    <ul style="color: #555;">
                        <li>Click on the "Upload Image" button to select your image.</li>
                        <li>Wait a few seconds while the model processes the image.</li>
                        <li>Voilà! Your extracted text will appear below. 🎉</li>
                    </ul>
                    <p style="color: #555;">🖼️ <strong>Note:</strong> For best results, use clear and well-lit images.</p>
                </div>""",
    theme="soft",
    allow_flagging="never"
)

# Launch the app
note.launch(debug=True)