Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,63 @@
|
|
1 |
-
import
|
2 |
-
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
from PIL import Image
|
4 |
import torch
|
|
|
5 |
import spaces
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
model =
|
|
|
|
|
|
|
|
|
10 |
|
11 |
@spaces.GPU
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
note = gr.Interface(
|
38 |
-
fn=
|
39 |
-
inputs=gr.Image(type="
|
40 |
-
outputs="
|
41 |
-
title="Handwritten
|
42 |
-
description="Upload an image
|
43 |
)
|
44 |
|
45 |
-
|
|
|
|
1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
import gradio as gr
|
5 |
import spaces
|
6 |
|
7 |
+
# Initialize model and processor
|
8 |
+
ocr = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
9 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
10 |
+
ocr,
|
11 |
+
torch_dtype=torch.bfloat16
|
12 |
+
).to("cuda")
|
13 |
+
processor = AutoProcessor.from_pretrained(ocr)
|
14 |
|
15 |
@spaces.GPU
|
16 |
+
def extract_text(image):
|
17 |
+
# Convert image to RGB
|
18 |
+
image = Image.open(image).convert("RGB")
|
19 |
+
|
20 |
+
# Create message structure
|
21 |
+
messages = [
|
22 |
+
{
|
23 |
+
"role": "user",
|
24 |
+
"content": [
|
25 |
+
{"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
|
26 |
+
{"type": "image"}
|
27 |
+
]
|
28 |
+
}
|
29 |
+
]
|
30 |
+
|
31 |
+
# Process input
|
32 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
33 |
+
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
|
34 |
+
|
35 |
+
|
36 |
+
# Generate output
|
37 |
+
outputs = model.generate(**inputs, max_new_tokens=250)
|
38 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
|
40 |
+
print(result)
|
41 |
+
|
42 |
+
# Clean up the output to remove the prompt and assistant text
|
43 |
+
if "assistant" in result.lower():
|
44 |
+
result = result[result.lower().find("assistant") + len("assistant"):].strip()
|
45 |
+
|
46 |
+
# Remove any remaining conversation markers
|
47 |
+
result = result.replace("user", "").replace("Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output", "").strip()
|
48 |
+
|
49 |
+
print(result)
|
50 |
+
|
51 |
+
return result
|
52 |
+
|
53 |
+
# Create Gradio interface
|
54 |
note = gr.Interface(
|
55 |
+
fn=extract_text,
|
56 |
+
inputs=gr.Image(type="filepath", label="Upload Image"),
|
57 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
58 |
+
title="Handwritten Text Extractor",
|
59 |
+
description="Upload an image containing handwritten text to extract its content.",
|
60 |
)
|
61 |
|
62 |
+
# Launch the app
|
63 |
+
note.launch(debug=True)
|