ZennyKenny's picture
add category output
3fac692 verified
raw
history blame
1.64 kB
import gradio as gr
from transformers import pipeline
import pandas as pd
import spaces
# Load the dataset
from datasets import load_dataset
ds = load_dataset('ZennyKenny/demo_customer_nps')
df = pd.DataFrame(ds['train'])
# Initialize the model pipeline
from huggingface_hub import login
import os
# Login using the API key stored as an environment variable
hf_api_key = os.getenv("API_KEY")
login(token=hf_api_key)
classifier = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
generator = pipeline("text-generation", model="mrm8488/t5-base-finetuned-question-generation-ap")
# Function to classify customer comments
def classify_comments():
sentiments = []
categories = []
results = []
for comment in df['customer_comment']:
# Classify the sentiment first
sentiment = pipe(comment)[0]['label']
prompt = f"What category best describes this comment? '{comment}' Please answer using only the name of the category: Product Experience, Customer Support, Price of Service, Other."
category = generator(prompt, max_length=30)[0]['generated_text']
categories.append(category)
sentiments.append(sentiment)
df['comment_sentiment'] = sentiments
df['comment_category'] = categories
return df[['customer_comment', 'comment_sentiment', 'comment_category']].to_html(index=False)
# Gradio Interface
with gr.Blocks() as nps:
gr.Markdown("# NPS Comment Categorization")
classify_btn = gr.Button("Classify Comments")
output = gr.HTML()
classify_btn.click(fn=classify_comments, outputs=output)
nps.launch()