Spaces:
Running
Running
RakeshUtekar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,208 +1,16 @@
|
|
1 |
-
# import os
|
2 |
-
# import streamlit as st
|
3 |
-
# import torch
|
4 |
-
# from langchain.chains import LLMChain
|
5 |
-
# from langchain.prompts import ChatPromptTemplate
|
6 |
-
# from langchain_huggingface import HuggingFaceEndpoint
|
7 |
-
|
8 |
-
# def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
9 |
-
# """
|
10 |
-
# Create a prompt that instructs the model to produce exactly 15 messages
|
11 |
-
# of conversation, alternating between name1 and name2, starting with name1.
|
12 |
-
|
13 |
-
# We will be very explicit and not allow any formatting except the required lines.
|
14 |
-
# """
|
15 |
-
# prompt_template_str = f"""
|
16 |
-
# You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
17 |
-
# {name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth,
|
18 |
-
# alternating until all 15 messages are complete. The 15th message is by {name1}.
|
19 |
-
|
20 |
-
# Requirements:
|
21 |
-
# - Output exactly 15 lines, no more, no less.
|
22 |
-
# - Each line must be a single message in the format:
|
23 |
-
# {name1}: <message> or {name2}: <message>
|
24 |
-
# - Do not add any headings, numbers, sample outputs, or explanations.
|
25 |
-
# - Do not mention code, programming, or instructions.
|
26 |
-
# - Each message should be 1-2 short sentences, friendly, natural, reflecting the style: {persona_style}.
|
27 |
-
# - Use everyday language, can ask questions, show opinions.
|
28 |
-
# - Use emojis sparingly if it fits the style (no more than 1-2 total).
|
29 |
-
# - No repeated lines, each message should logically follow from the previous one.
|
30 |
-
# - Do not produce anything after the 15th message. No extra lines or text.
|
31 |
-
|
32 |
-
# Produce all 15 messages now:
|
33 |
-
# """
|
34 |
-
# return ChatPromptTemplate.from_template(prompt_template_str)
|
35 |
-
|
36 |
-
# def create_summary_prompt(name1: str, name2: str, conversation: str):
|
37 |
-
# """Prompt for generating a title and summary."""
|
38 |
-
# summary_prompt_str = f"""
|
39 |
-
# Below is a completed 15-message conversation between {name1} and {name2}:
|
40 |
-
|
41 |
-
# {conversation}
|
42 |
-
|
43 |
-
# Please provide:
|
44 |
-
# Title: <A short descriptive title of the conversation>
|
45 |
-
# Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
46 |
-
|
47 |
-
# Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
48 |
-
# - One line starting with "Title:"
|
49 |
-
# - One line starting with "Summary:"
|
50 |
-
# """
|
51 |
-
# return ChatPromptTemplate.from_template(summary_prompt_str)
|
52 |
-
|
53 |
-
# def main():
|
54 |
-
# st.title("LLM Conversation Simulation")
|
55 |
-
|
56 |
-
# model_names = [
|
57 |
-
# "meta-llama/Llama-3.3-70B-Instruct",
|
58 |
-
# "meta-llama/Llama-3.1-405B-Instruct",
|
59 |
-
# "Qwen/Qwen2.5-72B-Instruct",
|
60 |
-
# "deepseek-ai/DeepSeek-V3",
|
61 |
-
# "deepseek-ai/DeepSeek-V2.5"
|
62 |
-
|
63 |
-
# ]
|
64 |
-
# selected_model = st.selectbox("Select a model:", model_names)
|
65 |
-
|
66 |
-
# name1 = st.text_input("Enter the first user's name:", value="Alice")
|
67 |
-
# name2 = st.text_input("Enter the second user's name:", value="Bob")
|
68 |
-
# persona_style = st.text_area("Enter the persona style characteristics:",
|
69 |
-
# value="friendly, curious, and a bit sarcastic")
|
70 |
-
|
71 |
-
# if st.button("Start Conversation Simulation"):
|
72 |
-
# st.write("**Loading model...**")
|
73 |
-
# print("Loading model...")
|
74 |
-
|
75 |
-
# with st.spinner("Starting simulation..."):
|
76 |
-
# endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
77 |
-
|
78 |
-
# try:
|
79 |
-
# llm = HuggingFaceEndpoint(
|
80 |
-
# endpoint_url=endpoint_url,
|
81 |
-
# huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
82 |
-
# task="text-generation",
|
83 |
-
# temperature=0.7,
|
84 |
-
# max_new_tokens=512
|
85 |
-
# )
|
86 |
-
# st.write("**Model loaded successfully!**")
|
87 |
-
# print("Model loaded successfully!")
|
88 |
-
# except Exception as e:
|
89 |
-
# st.error(f"Error initializing HuggingFaceEndpoint: {e}")
|
90 |
-
# print(f"Error initializing HuggingFaceEndpoint: {e}")
|
91 |
-
# return
|
92 |
-
|
93 |
-
# conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
|
94 |
-
# conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
|
95 |
-
|
96 |
-
# st.write("**Generating the full 15-message conversation...**")
|
97 |
-
# print("Generating the full 15-message conversation...")
|
98 |
-
|
99 |
-
# try:
|
100 |
-
# # Generate all 15 messages in one go
|
101 |
-
# conversation = conversation_chain.run(chat_history="", input="").strip()
|
102 |
-
|
103 |
-
# st.subheader("Final Conversation:")
|
104 |
-
# st.text(conversation)
|
105 |
-
# print("Conversation Generation Complete.\n")
|
106 |
-
# print("Full Conversation:\n", conversation)
|
107 |
-
|
108 |
-
# # Summarize the conversation
|
109 |
-
# summary_prompt = create_summary_prompt(name1, name2, conversation)
|
110 |
-
# summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
111 |
-
|
112 |
-
# st.subheader("Summary and Title:")
|
113 |
-
# st.write("**Summarizing the conversation...**")
|
114 |
-
# print("Summarizing the conversation...")
|
115 |
-
|
116 |
-
# summary = summary_chain.run(chat_history="", input="")
|
117 |
-
# st.write(summary)
|
118 |
-
# print("Summary:\n", summary)
|
119 |
-
|
120 |
-
# except Exception as e:
|
121 |
-
# st.error(f"Error generating conversation: {e}")
|
122 |
-
# print(f"Error generating conversation: {e}")
|
123 |
-
|
124 |
-
# if __name__ == "__main__":
|
125 |
-
# main()
|
126 |
-
|
127 |
-
|
128 |
import os
|
129 |
import streamlit as st
|
130 |
-
import
|
131 |
from langchain.chains import LLMChain
|
132 |
from langchain.prompts import ChatPromptTemplate
|
133 |
-
from
|
134 |
-
from pydantic import BaseModel
|
135 |
-
from typing import Optional, List, Mapping, Any
|
136 |
|
137 |
-
###############################################################################
|
138 |
-
# 1. Create a Custom LLM class for LangChain to call your Vertex AI endpoint.
|
139 |
-
###############################################################################
|
140 |
-
class VertexAICustomModel(LLM, BaseModel):
|
141 |
-
project_id: str
|
142 |
-
location: str
|
143 |
-
endpoint_id: str
|
144 |
-
temperature: float = 0.7
|
145 |
-
max_new_tokens: int = 512
|
146 |
-
|
147 |
-
@property
|
148 |
-
def _llm_type(self) -> str:
|
149 |
-
return "vertex_ai_custom"
|
150 |
-
|
151 |
-
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
152 |
-
# Initialize Vertex AI with your project/region
|
153 |
-
aiplatform.init(project=self.project_id, location=self.location)
|
154 |
-
endpoint = aiplatform.Endpoint(
|
155 |
-
endpoint_name=f"projects/{self.project_id}/locations/{self.location}/endpoints/{self.endpoint_id}"
|
156 |
-
)
|
157 |
-
|
158 |
-
# Construct the instance for prediction.
|
159 |
-
# NOTE: Adjust 'prompt', 'temperature', etc. if your model expects different parameters.
|
160 |
-
instance = {
|
161 |
-
"prompt": prompt,
|
162 |
-
"temperature": self.temperature,
|
163 |
-
"max_new_tokens": self.max_new_tokens
|
164 |
-
}
|
165 |
-
|
166 |
-
# Call the endpoint
|
167 |
-
response = endpoint.predict(instances=[instance])
|
168 |
-
|
169 |
-
# Extract the text from the response.
|
170 |
-
# This will vary depending on how your model returns predictions.
|
171 |
-
# A common approach is response.predictions[0]["generated_text"],
|
172 |
-
# but confirm your model's actual JSON structure.
|
173 |
-
predictions = response.predictions
|
174 |
-
if not predictions or "generated_text" not in predictions[0]:
|
175 |
-
raise ValueError(
|
176 |
-
f"Unexpected response structure from Vertex AI endpoint: {response}"
|
177 |
-
)
|
178 |
-
|
179 |
-
text = predictions[0]["generated_text"]
|
180 |
-
|
181 |
-
# Optionally apply 'stop' tokens
|
182 |
-
if stop:
|
183 |
-
for s in stop:
|
184 |
-
if s in text:
|
185 |
-
text = text.split(s)[0]
|
186 |
-
return text
|
187 |
-
|
188 |
-
@property
|
189 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
190 |
-
"""Return any identifying parameters of this LLM."""
|
191 |
-
return {
|
192 |
-
"endpoint_id": self.endpoint_id,
|
193 |
-
"project_id": self.project_id,
|
194 |
-
"location": self.location,
|
195 |
-
"temperature": self.temperature,
|
196 |
-
"max_new_tokens": self.max_new_tokens,
|
197 |
-
}
|
198 |
-
|
199 |
-
###############################################################################
|
200 |
-
# 2. Create your conversation and summary prompt templates (unchanged).
|
201 |
-
###############################################################################
|
202 |
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
203 |
"""
|
204 |
Create a prompt that instructs the model to produce exactly 15 messages
|
205 |
of conversation, alternating between name1 and name2, starting with name1.
|
|
|
|
|
206 |
"""
|
207 |
prompt_template_str = f"""
|
208 |
You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
@@ -229,77 +37,89 @@ def create_summary_prompt(name1: str, name2: str, conversation: str):
|
|
229 |
"""Prompt for generating a title and summary."""
|
230 |
summary_prompt_str = f"""
|
231 |
Below is a completed 15-message conversation between {name1} and {name2}:
|
|
|
232 |
{conversation}
|
|
|
233 |
Please provide:
|
234 |
Title: <A short descriptive title of the conversation>
|
235 |
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
|
|
236 |
Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
237 |
- One line starting with "Title:"
|
238 |
- One line starting with "Summary:"
|
239 |
"""
|
240 |
return ChatPromptTemplate.from_template(summary_prompt_str)
|
241 |
|
242 |
-
###############################################################################
|
243 |
-
# 3. Main Streamlit app with Vertex AI usage.
|
244 |
-
###############################################################################
|
245 |
def main():
|
246 |
-
st.title("LLM Conversation Simulation
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
255 |
|
256 |
-
# Input fields for conversation
|
257 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
258 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
259 |
-
persona_style = st.text_area("Enter the persona style characteristics:",
|
260 |
value="friendly, curious, and a bit sarcastic")
|
261 |
|
262 |
if st.button("Start Conversation Simulation"):
|
263 |
-
st.write("**
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
st.
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
if __name__ == "__main__":
|
305 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
import torch
|
4 |
from langchain.chains import LLMChain
|
5 |
from langchain.prompts import ChatPromptTemplate
|
6 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
9 |
"""
|
10 |
Create a prompt that instructs the model to produce exactly 15 messages
|
11 |
of conversation, alternating between name1 and name2, starting with name1.
|
12 |
+
|
13 |
+
We will be very explicit and not allow any formatting except the required lines.
|
14 |
"""
|
15 |
prompt_template_str = f"""
|
16 |
You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
|
|
37 |
"""Prompt for generating a title and summary."""
|
38 |
summary_prompt_str = f"""
|
39 |
Below is a completed 15-message conversation between {name1} and {name2}:
|
40 |
+
|
41 |
{conversation}
|
42 |
+
|
43 |
Please provide:
|
44 |
Title: <A short descriptive title of the conversation>
|
45 |
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
46 |
+
|
47 |
Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
48 |
- One line starting with "Title:"
|
49 |
- One line starting with "Summary:"
|
50 |
"""
|
51 |
return ChatPromptTemplate.from_template(summary_prompt_str)
|
52 |
|
|
|
|
|
|
|
53 |
def main():
|
54 |
+
st.title("LLM Conversation Simulation")
|
55 |
+
|
56 |
+
model_names = [
|
57 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
58 |
+
"meta-llama/Llama-3.1-405B-Instruct",
|
59 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
60 |
+
"deepseek-ai/DeepSeek-V3",
|
61 |
+
"deepseek-ai/DeepSeek-V2.5"
|
62 |
+
|
63 |
+
]
|
64 |
+
selected_model = st.selectbox("Select a model:", model_names)
|
65 |
|
|
|
66 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
67 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
68 |
+
persona_style = st.text_area("Enter the persona style characteristics:",
|
69 |
value="friendly, curious, and a bit sarcastic")
|
70 |
|
71 |
if st.button("Start Conversation Simulation"):
|
72 |
+
st.write("**Loading model...**")
|
73 |
+
print("Loading model...")
|
74 |
+
|
75 |
+
with st.spinner("Starting simulation..."):
|
76 |
+
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
77 |
+
|
78 |
+
try:
|
79 |
+
llm = HuggingFaceEndpoint(
|
80 |
+
endpoint_url=endpoint_url,
|
81 |
+
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
82 |
+
task="text-generation",
|
83 |
+
temperature=0.7,
|
84 |
+
max_new_tokens=512
|
85 |
+
)
|
86 |
+
st.write("**Model loaded successfully!**")
|
87 |
+
print("Model loaded successfully!")
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
|
90 |
+
print(f"Error initializing HuggingFaceEndpoint: {e}")
|
91 |
+
return
|
92 |
+
|
93 |
+
conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
|
94 |
+
conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
|
95 |
+
|
96 |
+
st.write("**Generating the full 15-message conversation...**")
|
97 |
+
print("Generating the full 15-message conversation...")
|
98 |
+
|
99 |
+
try:
|
100 |
+
# Generate all 15 messages in one go
|
101 |
+
conversation = conversation_chain.run(chat_history="", input="").strip()
|
102 |
+
|
103 |
+
st.subheader("Final Conversation:")
|
104 |
+
st.text(conversation)
|
105 |
+
print("Conversation Generation Complete.\n")
|
106 |
+
print("Full Conversation:\n", conversation)
|
107 |
+
|
108 |
+
# Summarize the conversation
|
109 |
+
summary_prompt = create_summary_prompt(name1, name2, conversation)
|
110 |
+
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
111 |
+
|
112 |
+
st.subheader("Summary and Title:")
|
113 |
+
st.write("**Summarizing the conversation...**")
|
114 |
+
print("Summarizing the conversation...")
|
115 |
+
|
116 |
+
summary = summary_chain.run(chat_history="", input="")
|
117 |
+
st.write(summary)
|
118 |
+
print("Summary:\n", summary)
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
st.error(f"Error generating conversation: {e}")
|
122 |
+
print(f"Error generating conversation: {e}")
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
main()
|