Spaces:
Running
Running
RakeshUtekar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
import
|
4 |
from langchain.chains import LLMChain
|
5 |
from langchain.prompts import ChatPromptTemplate
|
6 |
-
from
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
9 |
"""
|
10 |
Create a prompt that instructs the model to produce exactly 15 messages
|
11 |
of conversation, alternating between name1 and name2, starting with name1.
|
12 |
-
|
13 |
-
We will be very explicit and not allow any formatting except the required lines.
|
14 |
"""
|
15 |
prompt_template_str = f"""
|
16 |
You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
@@ -37,90 +229,77 @@ def create_summary_prompt(name1: str, name2: str, conversation: str):
|
|
37 |
"""Prompt for generating a title and summary."""
|
38 |
summary_prompt_str = f"""
|
39 |
Below is a completed 15-message conversation between {name1} and {name2}:
|
40 |
-
|
41 |
{conversation}
|
42 |
-
|
43 |
Please provide:
|
44 |
Title: <A short descriptive title of the conversation>
|
45 |
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
46 |
-
|
47 |
Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
48 |
- One line starting with "Title:"
|
49 |
- One line starting with "Summary:"
|
50 |
"""
|
51 |
return ChatPromptTemplate.from_template(summary_prompt_str)
|
52 |
|
|
|
|
|
|
|
53 |
def main():
|
54 |
-
st.title("LLM Conversation Simulation")
|
55 |
-
|
56 |
-
model_names = [
|
57 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
58 |
-
"meta-llama/Llama-3.1-405B-Instruct",
|
59 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
60 |
-
"deepseek-ai/DeepSeek-V3",
|
61 |
-
"deepseek-ai/DeepSeek-V2.5"
|
62 |
-
|
63 |
-
]
|
64 |
-
selected_model = st.selectbox("Select a model:", model_names)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
67 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
68 |
-
persona_style = st.text_area("Enter the persona style characteristics:",
|
69 |
value="friendly, curious, and a bit sarcastic")
|
70 |
|
71 |
if st.button("Start Conversation Simulation"):
|
72 |
-
st.write("**
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
st.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.subheader("Summary and Title:")
|
113 |
-
st.write("**Summarizing the conversation...**")
|
114 |
-
print("Summarizing the conversation...")
|
115 |
-
|
116 |
-
summary = summary_chain.run(chat_history="", input="")
|
117 |
-
st.write(summary)
|
118 |
-
print("Summary:\n", summary)
|
119 |
-
|
120 |
-
except Exception as e:
|
121 |
-
st.error(f"Error generating conversation: {e}")
|
122 |
-
print(f"Error generating conversation: {e}")
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
main()
|
126 |
-
|
|
|
1 |
+
# import os
|
2 |
+
# import streamlit as st
|
3 |
+
# import torch
|
4 |
+
# from langchain.chains import LLMChain
|
5 |
+
# from langchain.prompts import ChatPromptTemplate
|
6 |
+
# from langchain_huggingface import HuggingFaceEndpoint
|
7 |
+
|
8 |
+
# def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
9 |
+
# """
|
10 |
+
# Create a prompt that instructs the model to produce exactly 15 messages
|
11 |
+
# of conversation, alternating between name1 and name2, starting with name1.
|
12 |
+
|
13 |
+
# We will be very explicit and not allow any formatting except the required lines.
|
14 |
+
# """
|
15 |
+
# prompt_template_str = f"""
|
16 |
+
# You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
17 |
+
# {name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth,
|
18 |
+
# alternating until all 15 messages are complete. The 15th message is by {name1}.
|
19 |
+
|
20 |
+
# Requirements:
|
21 |
+
# - Output exactly 15 lines, no more, no less.
|
22 |
+
# - Each line must be a single message in the format:
|
23 |
+
# {name1}: <message> or {name2}: <message>
|
24 |
+
# - Do not add any headings, numbers, sample outputs, or explanations.
|
25 |
+
# - Do not mention code, programming, or instructions.
|
26 |
+
# - Each message should be 1-2 short sentences, friendly, natural, reflecting the style: {persona_style}.
|
27 |
+
# - Use everyday language, can ask questions, show opinions.
|
28 |
+
# - Use emojis sparingly if it fits the style (no more than 1-2 total).
|
29 |
+
# - No repeated lines, each message should logically follow from the previous one.
|
30 |
+
# - Do not produce anything after the 15th message. No extra lines or text.
|
31 |
+
|
32 |
+
# Produce all 15 messages now:
|
33 |
+
# """
|
34 |
+
# return ChatPromptTemplate.from_template(prompt_template_str)
|
35 |
+
|
36 |
+
# def create_summary_prompt(name1: str, name2: str, conversation: str):
|
37 |
+
# """Prompt for generating a title and summary."""
|
38 |
+
# summary_prompt_str = f"""
|
39 |
+
# Below is a completed 15-message conversation between {name1} and {name2}:
|
40 |
+
|
41 |
+
# {conversation}
|
42 |
+
|
43 |
+
# Please provide:
|
44 |
+
# Title: <A short descriptive title of the conversation>
|
45 |
+
# Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
46 |
+
|
47 |
+
# Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
48 |
+
# - One line starting with "Title:"
|
49 |
+
# - One line starting with "Summary:"
|
50 |
+
# """
|
51 |
+
# return ChatPromptTemplate.from_template(summary_prompt_str)
|
52 |
+
|
53 |
+
# def main():
|
54 |
+
# st.title("LLM Conversation Simulation")
|
55 |
+
|
56 |
+
# model_names = [
|
57 |
+
# "meta-llama/Llama-3.3-70B-Instruct",
|
58 |
+
# "meta-llama/Llama-3.1-405B-Instruct",
|
59 |
+
# "Qwen/Qwen2.5-72B-Instruct",
|
60 |
+
# "deepseek-ai/DeepSeek-V3",
|
61 |
+
# "deepseek-ai/DeepSeek-V2.5"
|
62 |
+
|
63 |
+
# ]
|
64 |
+
# selected_model = st.selectbox("Select a model:", model_names)
|
65 |
+
|
66 |
+
# name1 = st.text_input("Enter the first user's name:", value="Alice")
|
67 |
+
# name2 = st.text_input("Enter the second user's name:", value="Bob")
|
68 |
+
# persona_style = st.text_area("Enter the persona style characteristics:",
|
69 |
+
# value="friendly, curious, and a bit sarcastic")
|
70 |
+
|
71 |
+
# if st.button("Start Conversation Simulation"):
|
72 |
+
# st.write("**Loading model...**")
|
73 |
+
# print("Loading model...")
|
74 |
+
|
75 |
+
# with st.spinner("Starting simulation..."):
|
76 |
+
# endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
|
77 |
+
|
78 |
+
# try:
|
79 |
+
# llm = HuggingFaceEndpoint(
|
80 |
+
# endpoint_url=endpoint_url,
|
81 |
+
# huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
|
82 |
+
# task="text-generation",
|
83 |
+
# temperature=0.7,
|
84 |
+
# max_new_tokens=512
|
85 |
+
# )
|
86 |
+
# st.write("**Model loaded successfully!**")
|
87 |
+
# print("Model loaded successfully!")
|
88 |
+
# except Exception as e:
|
89 |
+
# st.error(f"Error initializing HuggingFaceEndpoint: {e}")
|
90 |
+
# print(f"Error initializing HuggingFaceEndpoint: {e}")
|
91 |
+
# return
|
92 |
+
|
93 |
+
# conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
|
94 |
+
# conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
|
95 |
+
|
96 |
+
# st.write("**Generating the full 15-message conversation...**")
|
97 |
+
# print("Generating the full 15-message conversation...")
|
98 |
+
|
99 |
+
# try:
|
100 |
+
# # Generate all 15 messages in one go
|
101 |
+
# conversation = conversation_chain.run(chat_history="", input="").strip()
|
102 |
+
|
103 |
+
# st.subheader("Final Conversation:")
|
104 |
+
# st.text(conversation)
|
105 |
+
# print("Conversation Generation Complete.\n")
|
106 |
+
# print("Full Conversation:\n", conversation)
|
107 |
+
|
108 |
+
# # Summarize the conversation
|
109 |
+
# summary_prompt = create_summary_prompt(name1, name2, conversation)
|
110 |
+
# summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
111 |
+
|
112 |
+
# st.subheader("Summary and Title:")
|
113 |
+
# st.write("**Summarizing the conversation...**")
|
114 |
+
# print("Summarizing the conversation...")
|
115 |
+
|
116 |
+
# summary = summary_chain.run(chat_history="", input="")
|
117 |
+
# st.write(summary)
|
118 |
+
# print("Summary:\n", summary)
|
119 |
+
|
120 |
+
# except Exception as e:
|
121 |
+
# st.error(f"Error generating conversation: {e}")
|
122 |
+
# print(f"Error generating conversation: {e}")
|
123 |
+
|
124 |
+
# if __name__ == "__main__":
|
125 |
+
# main()
|
126 |
+
|
127 |
+
|
128 |
import os
|
129 |
import streamlit as st
|
130 |
+
import google.cloud.aiplatform as aiplatform
|
131 |
from langchain.chains import LLMChain
|
132 |
from langchain.prompts import ChatPromptTemplate
|
133 |
+
from langchain.llms.base import LLM
|
134 |
+
from pydantic import BaseModel
|
135 |
+
from typing import Optional, List, Mapping, Any
|
136 |
|
137 |
+
###############################################################################
|
138 |
+
# 1. Create a Custom LLM class for LangChain to call your Vertex AI endpoint.
|
139 |
+
###############################################################################
|
140 |
+
class VertexAICustomModel(LLM, BaseModel):
|
141 |
+
project_id: str
|
142 |
+
location: str
|
143 |
+
endpoint_id: str
|
144 |
+
temperature: float = 0.7
|
145 |
+
max_new_tokens: int = 512
|
146 |
+
|
147 |
+
@property
|
148 |
+
def _llm_type(self) -> str:
|
149 |
+
return "vertex_ai_custom"
|
150 |
+
|
151 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
152 |
+
# Initialize Vertex AI with your project/region
|
153 |
+
aiplatform.init(project=self.project_id, location=self.location)
|
154 |
+
endpoint = aiplatform.Endpoint(
|
155 |
+
endpoint_name=f"projects/{self.project_id}/locations/{self.location}/endpoints/{self.endpoint_id}"
|
156 |
+
)
|
157 |
+
|
158 |
+
# Construct the instance for prediction.
|
159 |
+
# NOTE: Adjust 'prompt', 'temperature', etc. if your model expects different parameters.
|
160 |
+
instance = {
|
161 |
+
"prompt": prompt,
|
162 |
+
"temperature": self.temperature,
|
163 |
+
"max_new_tokens": self.max_new_tokens
|
164 |
+
}
|
165 |
+
|
166 |
+
# Call the endpoint
|
167 |
+
response = endpoint.predict(instances=[instance])
|
168 |
+
|
169 |
+
# Extract the text from the response.
|
170 |
+
# This will vary depending on how your model returns predictions.
|
171 |
+
# A common approach is response.predictions[0]["generated_text"],
|
172 |
+
# but confirm your model's actual JSON structure.
|
173 |
+
predictions = response.predictions
|
174 |
+
if not predictions or "generated_text" not in predictions[0]:
|
175 |
+
raise ValueError(
|
176 |
+
f"Unexpected response structure from Vertex AI endpoint: {response}"
|
177 |
+
)
|
178 |
+
|
179 |
+
text = predictions[0]["generated_text"]
|
180 |
+
|
181 |
+
# Optionally apply 'stop' tokens
|
182 |
+
if stop:
|
183 |
+
for s in stop:
|
184 |
+
if s in text:
|
185 |
+
text = text.split(s)[0]
|
186 |
+
return text
|
187 |
+
|
188 |
+
@property
|
189 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
190 |
+
"""Return any identifying parameters of this LLM."""
|
191 |
+
return {
|
192 |
+
"endpoint_id": self.endpoint_id,
|
193 |
+
"project_id": self.project_id,
|
194 |
+
"location": self.location,
|
195 |
+
"temperature": self.temperature,
|
196 |
+
"max_new_tokens": self.max_new_tokens,
|
197 |
+
}
|
198 |
+
|
199 |
+
###############################################################################
|
200 |
+
# 2. Create your conversation and summary prompt templates (unchanged).
|
201 |
+
###############################################################################
|
202 |
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
|
203 |
"""
|
204 |
Create a prompt that instructs the model to produce exactly 15 messages
|
205 |
of conversation, alternating between name1 and name2, starting with name1.
|
|
|
|
|
206 |
"""
|
207 |
prompt_template_str = f"""
|
208 |
You are simulating a conversation of exactly 15 messages between two people: {name1} and {name2}.
|
|
|
229 |
"""Prompt for generating a title and summary."""
|
230 |
summary_prompt_str = f"""
|
231 |
Below is a completed 15-message conversation between {name1} and {name2}:
|
|
|
232 |
{conversation}
|
|
|
233 |
Please provide:
|
234 |
Title: <A short descriptive title of the conversation>
|
235 |
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
|
|
|
236 |
Do not continue the conversation, do not repeat it, and do not add extra formatting beyond the two lines:
|
237 |
- One line starting with "Title:"
|
238 |
- One line starting with "Summary:"
|
239 |
"""
|
240 |
return ChatPromptTemplate.from_template(summary_prompt_str)
|
241 |
|
242 |
+
###############################################################################
|
243 |
+
# 3. Main Streamlit app with Vertex AI usage.
|
244 |
+
###############################################################################
|
245 |
def main():
|
246 |
+
st.title("LLM Conversation Simulation (GCP Vertex AI)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
# We can remove model selection if we are always using your deployed model:
|
249 |
+
# st.selectbox(... ) # => Removed
|
250 |
+
|
251 |
+
# Hardcode or load your Vertex AI endpoint details here
|
252 |
+
project_id = "282802344966"
|
253 |
+
location = "us-west1"
|
254 |
+
endpoint_id = "1106913540054188032"
|
255 |
+
|
256 |
+
# Input fields for conversation
|
257 |
name1 = st.text_input("Enter the first user's name:", value="Alice")
|
258 |
name2 = st.text_input("Enter the second user's name:", value="Bob")
|
259 |
+
persona_style = st.text_area("Enter the persona style characteristics:",
|
260 |
value="friendly, curious, and a bit sarcastic")
|
261 |
|
262 |
if st.button("Start Conversation Simulation"):
|
263 |
+
st.write("**Initializing Vertex AI endpoint...**")
|
264 |
+
st.spinner("Starting simulation...")
|
265 |
+
|
266 |
+
# Create your custom LLM that calls Vertex AI
|
267 |
+
llm = VertexAICustomModel(
|
268 |
+
project_id=project_id,
|
269 |
+
location=location,
|
270 |
+
endpoint_id=endpoint_id,
|
271 |
+
temperature=0.7,
|
272 |
+
max_new_tokens=512
|
273 |
+
)
|
274 |
+
|
275 |
+
st.write("**Vertex AI endpoint loaded successfully!**")
|
276 |
+
|
277 |
+
# Build the conversation chain
|
278 |
+
conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
|
279 |
+
conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
|
280 |
+
|
281 |
+
st.write("**Generating the full 15-message conversation...**")
|
282 |
+
|
283 |
+
try:
|
284 |
+
# Generate all 15 messages in one go
|
285 |
+
conversation = conversation_chain.run(chat_history="", input="").strip()
|
286 |
+
|
287 |
+
st.subheader("Final Conversation:")
|
288 |
+
st.text(conversation)
|
289 |
+
|
290 |
+
# Summarize the conversation
|
291 |
+
summary_prompt = create_summary_prompt(name1, name2, conversation)
|
292 |
+
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
293 |
+
|
294 |
+
st.subheader("Summary and Title:")
|
295 |
+
st.write("**Summarizing the conversation...**")
|
296 |
+
|
297 |
+
summary = summary_chain.run(chat_history="", input="")
|
298 |
+
st.write(summary)
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
st.error(f"Error generating conversation: {e}")
|
302 |
+
print(f"Error generating conversation: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
if __name__ == "__main__":
|
305 |
main()
|
|