Test / app.py
RakeshUtekar's picture
Update app.py
59e9cef verified
raw
history blame
5.35 kB
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
"""Create a prompt for generating the entire 15-message conversation."""
prompt_template_str = f"""
You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}.
The conversation should reflect the style: {persona_style}.
{name1} speaks first (message 1), {name2} responds (message 2), then {name1} (message 3), and so forth,
until 15 messages are complete (the 15th message by {name1}).
Rules:
- Each message is formatted as:
{name1}: <message> or {name2}: <message>
- Each message: 1-2 short sentences, friendly, natural.
- Use everyday language, can ask questions, show opinions.
- Use emojis sparingly if it fits the style.
- Do not repeat the same line.
- Produce all 15 messages now and do not continue beyond the 15th message.
"""
return ChatPromptTemplate.from_template(prompt_template_str)
def create_summary_prompt(name1: str, name2: str, conversation: str):
"""Create a prompt specifically for generating a title and summary of the conversation."""
# Here we explicitly create a new prompt template for the summary.
summary_prompt_str = f"""
The following is a completed conversation between {name1} and {name2}:
{conversation}
Please provide:
Title: <A short descriptive title of the conversation>
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
Do not continue the conversation, just provide title and summary.
"""
return ChatPromptTemplate.from_template(summary_prompt_str)
def main():
st.title("LLM Conversation Simulation")
model_names = [
"meta-llama/Llama-3.3-70B-Instruct",
"mistralai/Mistral-7B-v0.1",
"lmsys/vicuna-13b-v1.5",
"tiiuae/falcon-180B",
"EleutherAI/gpt-neox-20b",
"dice-research/lola_v1"
]
selected_model = st.selectbox("Select a model:", model_names)
name1 = st.text_input("Enter the first user's name:", value="Alice")
name2 = st.text_input("Enter the second user's name:", value="Bob")
persona_style = st.text_area("Enter the persona style characteristics:",
value="friendly, curious, and a bit sarcastic")
if st.button("Start Conversation Simulation"):
st.write("**Loading model...**")
print("Loading model...")
with st.spinner("Starting simulation..."):
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
try:
llm = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
task="text-generation",
temperature=0.7,
max_new_tokens=512
)
st.write("**Model loaded successfully!**")
print("Model loaded successfully!")
except Exception as e:
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
print(f"Error initializing HuggingFaceEndpoint: {e}")
return
# Create a chain for the conversation generation
conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
st.write("**Generating the full 15-message conversation...**")
print("Generating the full 15-message conversation...")
try:
# Generate all 15 messages in one go
# Here we send the prompt for the conversation to the LLM
conversation = conversation_chain.run(chat_history="", input="Produce the full conversation now.")
conversation = conversation.strip()
st.subheader("Final Conversation:")
st.text(conversation)
print("Conversation Generation Complete.\n")
print("Full Conversation:\n", conversation)
# Now we create a separate prompt for the summary
summary_prompt = create_summary_prompt(name1, name2, conversation)
# Create a new chain for the summary using the summary prompt
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
st.subheader("Summary and Title:")
st.write("**Summarizing the conversation...**")
print("Summarizing the conversation...")
# Here we explicitly call the summary chain with the summary prompt
# This ensures we are actually sending the summary prompt to the LLM
summary = summary_chain.run(chat_history="", input="")
st.write(summary)
print("Summary:\n", summary)
except Exception as e:
st.error(f"Error generating conversation: {e}")
print(f"Error generating conversation: {e}")
if __name__ == "__main__":
main()