ammariii08's picture
Update app.py
fcef2ac verified
import os
# Set up caching for Hugging Face models
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU usage
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from torchvision.transforms.functional import InterpolationMode
import torchvision.transforms as T
from transformers import AutoModel, AutoTokenizer
import gc
# Import prompts from prompts.py
from prompts import front as front_prompt, back as back_prompt
# ---------------------------
# HUGGING FACE MODEL SETUP (CPU)
# ---------------------------
path = "OpenGVLab/InternVL2_5-1B"
cache_folder = "./.cache"
# Load the Vision AI model and tokenizer globally.
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.float32,
trust_remote_code=True
).eval().to("cpu")
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
# ---------------------------
# YOLO MODEL INITIALIZATION
# ---------------------------
model_path = "best.pt"
modelY = YOLO(model_path)
modelY.to('cpu') # Explicitly move model to CPU
def preprocessing(image):
"""Apply enhancement filters and resize."""
image = Image.fromarray(np.array(image))
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
width = 448
aspect_ratio = image.height / image.width
height = int(width * aspect_ratio)
image = image.resize((width, height))
return image
def imageRotation(image):
"""Rotate image if height exceeds width."""
if image.height > image.width:
return image.rotate(90, expand=True)
return image
def detect_document(image):
"""Detect front/back of the document using YOLO."""
image_np = np.array(image)
results = modelY(image_np, conf=0.70, device='cpu')
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image_np, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image_np), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crop detected bounding boxes from the image."""
cropped_images = {}
image_np = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image_np[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
# ---------------------------
# VISION AI API FUNCTIONS
# ---------------------------
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
return transform
def load_image(image_file):
transform = build_transform(input_size=448)
pixel_values = transform(image_file).unsqueeze(0) # Add batch dimension
return pixel_values
def vision_ai_api(image, doc_type):
"""Run the model using a dynamic prompt based on detected doc type."""
pixel_values = load_image(image).to(torch.float32).to("cpu")
generation_config = dict(max_new_tokens=256, do_sample=True)
question = front_prompt if doc_type == "front" else back_prompt if doc_type == "back" else "Please provide document details."
print("Before requesting model...")
response = model.chat(tokenizer, pixel_values, question, generation_config)
print("After requesting model...", response)
# Clear memory
del pixel_values
gc.collect() # Force garbage collection
torch.cuda.empty_cache()
return f'{response}'
# ---------------------------
# PREDICTION PIPELINE
# ---------------------------
def predict(image):
"""Pipeline: Preprocess β†’ Detect β†’ Crop β†’ Vision AI API call."""
processed_image = preprocessing(image)
rotated_image = imageRotation(processed_image)
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {"front": front_result, "back": back_result}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
# ---------------------------
# GRADIO INTERFACE LAUNCH
# ---------------------------
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()