File size: 5,870 Bytes
7832c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c24c98
7832c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcef2ac
7832c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8975627
7832c3b
 
 
 
 
 
 
 
 
 
 
 
4c24c98
7832c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
# Set up caching for Hugging Face models
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Disable GPU usage

import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from torchvision.transforms.functional import InterpolationMode
import torchvision.transforms as T
from transformers import AutoModel, AutoTokenizer
import gc

# Import prompts from prompts.py
from prompts import front as front_prompt, back as back_prompt

# ---------------------------
# HUGGING FACE MODEL SETUP (CPU)
# ---------------------------
path = "OpenGVLab/InternVL2_5-1B"
cache_folder = "./.cache"

# Load the Vision AI model and tokenizer globally.
model = AutoModel.from_pretrained(
    path,
    cache_dir=cache_folder,
    torch_dtype=torch.float32,
    trust_remote_code=True
).eval().to("cpu")

tokenizer = AutoTokenizer.from_pretrained(
    path,
    cache_dir=cache_folder,
    trust_remote_code=True,
    use_fast=False
)


# ---------------------------
# YOLO MODEL INITIALIZATION
# ---------------------------
model_path = "best.pt" 
modelY = YOLO(model_path)
modelY.to('cpu')  # Explicitly move model to CPU

def preprocessing(image):
    """Apply enhancement filters and resize."""
    image = Image.fromarray(np.array(image))
    image = ImageEnhance.Sharpness(image).enhance(2.0)   # Increase sharpness
    image = ImageEnhance.Contrast(image).enhance(1.5)     # Increase contrast
    image = ImageEnhance.Brightness(image).enhance(0.8)   # Reduce brightness

    width = 448
    aspect_ratio = image.height / image.width
    height = int(width * aspect_ratio)
    image = image.resize((width, height))
    return image

def imageRotation(image):
    """Rotate image if height exceeds width."""
    if image.height > image.width:  
        return image.rotate(90, expand=True) 
    return image

def detect_document(image):
    """Detect front/back of the document using YOLO."""
    image_np = np.array(image)
    results = modelY(image_np, conf=0.70, device='cpu') 

    detected_classes = set()  
    labels = []
    bounding_boxes = []

    for result in results:
        for box in result.boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            conf = box.conf[0]
            cls = int(box.cls[0])
            class_name = modelY.names[cls]

            detected_classes.add(class_name)
            label = f"{class_name} {conf:.2f}"
            labels.append(label)
            bounding_boxes.append((x1, y1, x2, y2, class_name, conf))

            cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(image_np, label, (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    possible_classes = {"front", "back"}
    missing_classes = possible_classes - detected_classes
    if missing_classes:
        labels.append(f"Missing: {', '.join(missing_classes)}")

    return Image.fromarray(image_np), labels, bounding_boxes

def crop_image(image, bounding_boxes):
    """Crop detected bounding boxes from the image."""
    cropped_images = {}
    image_np = np.array(image)
    for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
        cropped = image_np[y1:y2, x1:x2]
        cropped_images[class_name] = Image.fromarray(cropped)
    return cropped_images

# ---------------------------
# VISION AI API FUNCTIONS
# ---------------------------
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    ])
    return transform

def load_image(image_file):
    transform = build_transform(input_size=448)
    pixel_values = transform(image_file).unsqueeze(0)  # Add batch dimension
    return pixel_values


def vision_ai_api(image, doc_type):
    """Run the model using a dynamic prompt based on detected doc type."""
    pixel_values = load_image(image).to(torch.float32).to("cpu")
    generation_config = dict(max_new_tokens=256, do_sample=True)
    
    question = front_prompt if doc_type == "front" else back_prompt if doc_type == "back" else "Please provide document details."
    
    print("Before requesting model...")
    response = model.chat(tokenizer, pixel_values, question, generation_config)
    print("After requesting model...", response)
    
    # Clear memory
    del pixel_values
    gc.collect()  # Force garbage collection
    torch.cuda.empty_cache()  
    
    return f'{response}'

# ---------------------------
# PREDICTION PIPELINE
# ---------------------------
def predict(image):
    """Pipeline: Preprocess β†’ Detect β†’ Crop β†’ Vision AI API call."""
    processed_image = preprocessing(image)
    rotated_image = imageRotation(processed_image)
    detected_image, labels, bounding_boxes = detect_document(rotated_image)
    cropped_images = crop_image(rotated_image, bounding_boxes)

    front_result, back_result = None, None
    if "front" in cropped_images:
        front_result = vision_ai_api(cropped_images["front"], "front")
    if "back" in cropped_images:
        back_result = vision_ai_api(cropped_images["back"], "back")

    api_results = {"front": front_result, "back": back_result}
    single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image   
    return single_image, labels, api_results

# ---------------------------
# GRADIO INTERFACE LAUNCH
# ---------------------------
iface = gr.Interface(
    fn=predict, 
    inputs="image", 
    outputs=["image", "text", "json"],  
    title="License Field Detection (Front & Back Card)"
)

iface.launch()