|
__import__('pysqlite3') |
|
import sys |
|
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') |
|
|
|
import os |
|
import time |
|
from uuid import uuid4 |
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings |
|
|
|
from langchain.chains import create_retrieval_chain |
|
from langchain_core.tools import tool |
|
|
|
from utils.preprocess import load_data, split_data, upsert_chromadb |
|
from utils.prebuilt_chain import history_aware_retriever, documents_retriever |
|
|
|
import streamlit as st |
|
|
|
db_name = "chroma" |
|
|
|
st.set_page_config(page_title="RAG Demo App") |
|
st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma") |
|
|
|
@st.cache_resource |
|
def load_model(api_key): |
|
"""cached llm and embedding model""" |
|
if st.session_state.provider == "OpenAI": |
|
return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key) |
|
elif st.session_state.provider == "Groq": |
|
return ChatOpenAI(model="qwen-2.5-32b", temperature=0.3, api_key=api_key, base_url="https://api.groq.com/openai/v1") |
|
|
|
@st.cache_resource |
|
def load_embedding(): |
|
st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de", |
|
batch_size=64) |
|
|
|
def inputs(): |
|
"""Input fields for user interaction""" |
|
with st.sidebar: |
|
st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"]) |
|
|
|
st.session_state.api_key = st.text_input("Masukkan API Key", type="password") |
|
os.environ["OPENAI_API_KEY"] = st.session_state.api_key |
|
|
|
st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name") |
|
|
|
st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True) |
|
st.button("Proses Dokumen", on_click=process_data) |
|
|
|
def process_data(): |
|
"""Main function to process data""" |
|
if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs: |
|
st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!") |
|
else: |
|
with st.spinner("π Memproses dokumen..."): |
|
loaded_docs = load_data(st.session_state.source_docs) |
|
splitted_docs = split_data(loaded_docs) |
|
|
|
idx = [str(uuid4()) for _ in range(len(splitted_docs))] |
|
|
|
st.session_state.vector_store = upsert_chromadb(splitted_docs, |
|
st.session_state.embedding, |
|
idx, |
|
st.session_state.chroma_collection_name, |
|
db_name) |
|
msg = st.empty() |
|
msg.success("Dokumen berhasil diproses!") |
|
time.sleep(3) |
|
msg.empty() |
|
|
|
|
|
@tool(response_format="content_and_artifact") |
|
def retrieve(query: str): |
|
"""Retrieve information related to a query. |
|
|
|
Args: |
|
query: The user's query. |
|
""" |
|
retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6) |
|
keys = ["author", "creator", "page", "source", "start_index", "total_pages"] |
|
serialized = "\n\n".join( |
|
(f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}") |
|
for doc in retrieved_docs |
|
) |
|
return serialized, retrieved_docs |
|
|
|
def generate(query): |
|
"""Generate a response to the user's query.""" |
|
|
|
retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1}) |
|
|
|
|
|
history_retriever = history_aware_retriever(st.session_state.llm, retriever) |
|
question_answer_chain = documents_retriever(st.session_state.llm) |
|
|
|
rag_chain = create_retrieval_chain(history_retriever, question_answer_chain) |
|
|
|
|
|
response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)}) |
|
st.session_state.messages.append(query) |
|
st.session_state.messages.append(response["answer"]) |
|
return response["answer"] |
|
|
|
if __name__ == "__main__": |
|
os.makedirs(db_name, exist_ok=True) |
|
|
|
inputs() |
|
st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY")) |
|
load_embedding() |
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
if st.session_state.messages: |
|
st.chat_message('human').write(st.session_state.messages[-2]) |
|
st.chat_message('ai').write(st.session_state.messages[-1]) |
|
|
|
query = st.chat_input("Masukkan Prompt") |
|
if query: |
|
st.chat_message("human").write(query) |
|
response = generate(query) |
|
st.chat_message("ai").write(response) |
|
|