LLM-RAG / app.py
Libidrave's picture
Update app.py
e94b921 verified
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import os
import time
from uuid import uuid4
from langchain_openai import ChatOpenAI
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain.chains import create_retrieval_chain
from langchain_core.tools import tool
from utils.preprocess import load_data, split_data, upsert_chromadb
from utils.prebuilt_chain import history_aware_retriever, documents_retriever
import streamlit as st
db_name = "chroma" # default name for Chromadb
st.set_page_config(page_title="RAG Demo App")
st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma")
@st.cache_resource
def load_model(api_key):
"""cached llm and embedding model"""
if st.session_state.provider == "OpenAI":
return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key)
elif st.session_state.provider == "Groq":
return ChatOpenAI(model="qwen-2.5-32b", temperature=0.3, api_key=api_key, base_url="https://api.groq.com/openai/v1")
@st.cache_resource
def load_embedding():
st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de",
batch_size=64)
def inputs():
"""Input fields for user interaction"""
with st.sidebar:
st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"])
st.session_state.api_key = st.text_input("Masukkan API Key", type="password")
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name")
st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True)
st.button("Proses Dokumen", on_click=process_data)
def process_data():
"""Main function to process data"""
if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs:
st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!")
else:
with st.spinner("πŸ“š Memproses dokumen..."):
loaded_docs = load_data(st.session_state.source_docs)
splitted_docs = split_data(loaded_docs)
idx = [str(uuid4()) for _ in range(len(splitted_docs))]
st.session_state.vector_store = upsert_chromadb(splitted_docs,
st.session_state.embedding,
idx,
st.session_state.chroma_collection_name,
db_name)
msg = st.empty()
msg.success("Dokumen berhasil diproses!")
time.sleep(3)
msg.empty()
# Main retriever
@tool(response_format="content_and_artifact")
def retrieve(query: str):
"""Retrieve information related to a query.
Args:
query: The user's query.
"""
retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6)
keys = ["author", "creator", "page", "source", "start_index", "total_pages"]
serialized = "\n\n".join(
(f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}")
for doc in retrieved_docs
)
return serialized, retrieved_docs
def generate(query):
"""Generate a response to the user's query."""
# Dummy retriever.
retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1})
# Create a RAG chain using the history-aware retriever and the document-retriever.
history_retriever = history_aware_retriever(st.session_state.llm, retriever)
question_answer_chain = documents_retriever(st.session_state.llm)
rag_chain = create_retrieval_chain(history_retriever, question_answer_chain)
# Usage:
response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)})
st.session_state.messages.append(query)
st.session_state.messages.append(response["answer"])
return response["answer"]
if __name__ == "__main__":
os.makedirs(db_name, exist_ok=True) # This directory is used to store persistent files from Chromadb
inputs()
st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY"))
load_embedding()
if "messages" not in st.session_state:
st.session_state.messages = []
if st.session_state.messages:
st.chat_message('human').write(st.session_state.messages[-2])
st.chat_message('ai').write(st.session_state.messages[-1])
query = st.chat_input("Masukkan Prompt")
if query:
st.chat_message("human").write(query)
response = generate(query)
st.chat_message("ai").write(response)