Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,123 @@
|
|
1 |
-
__import__('pysqlite3')
|
2 |
-
import sys
|
3 |
-
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
-
|
5 |
-
import os
|
6 |
-
import time
|
7 |
-
from uuid import uuid4
|
8 |
-
|
9 |
-
from langchain_openai import ChatOpenAI
|
10 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
11 |
-
|
12 |
-
from langchain.chains import create_retrieval_chain
|
13 |
-
from langchain_core.tools import tool
|
14 |
-
|
15 |
-
from utils.preprocess import load_data, split_data, upsert_chromadb
|
16 |
-
from utils.prebuilt_chain import history_aware_retriever, documents_retriever
|
17 |
-
|
18 |
-
import streamlit as st
|
19 |
-
|
20 |
-
db_name = "chroma" # default name for Chromadb
|
21 |
-
|
22 |
-
st.set_page_config(page_title="RAG Demo App")
|
23 |
-
st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma")
|
24 |
-
|
25 |
-
@st.cache_resource
|
26 |
-
def load_model(api_key):
|
27 |
-
"""cached llm and embedding model"""
|
28 |
-
if st.session_state.provider == "OpenAI":
|
29 |
-
return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key)
|
30 |
-
elif st.session_state.provider == "Groq":
|
31 |
-
return ChatOpenAI(model="
|
32 |
-
|
33 |
-
@st.cache_resource
|
34 |
-
def load_embedding():
|
35 |
-
st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de",
|
36 |
-
batch_size=64)
|
37 |
-
|
38 |
-
def inputs():
|
39 |
-
"""Input fields for user interaction"""
|
40 |
-
with st.sidebar:
|
41 |
-
st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"])
|
42 |
-
|
43 |
-
st.session_state.api_key = st.text_input("Masukkan API Key", type="password")
|
44 |
-
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
|
45 |
-
|
46 |
-
st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name")
|
47 |
-
|
48 |
-
st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True)
|
49 |
-
st.button("Proses Dokumen", on_click=process_data)
|
50 |
-
|
51 |
-
def process_data():
|
52 |
-
"""Main function to process data"""
|
53 |
-
if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs:
|
54 |
-
st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!")
|
55 |
-
else:
|
56 |
-
with st.spinner("📚 Memproses dokumen..."):
|
57 |
-
loaded_docs = load_data(st.session_state.source_docs)
|
58 |
-
splitted_docs = split_data(loaded_docs)
|
59 |
-
|
60 |
-
idx = [str(uuid4()) for _ in range(len(splitted_docs))]
|
61 |
-
|
62 |
-
st.session_state.vector_store = upsert_chromadb(splitted_docs,
|
63 |
-
st.session_state.embedding,
|
64 |
-
idx,
|
65 |
-
st.session_state.chroma_collection_name,
|
66 |
-
db_name)
|
67 |
-
msg = st.empty()
|
68 |
-
msg.success("Dokumen berhasil diproses!")
|
69 |
-
time.sleep(3)
|
70 |
-
msg.empty()
|
71 |
-
|
72 |
-
# Main retriever
|
73 |
-
@tool(response_format="content_and_artifact")
|
74 |
-
def retrieve(query: str):
|
75 |
-
"""Retrieve information related to a query.
|
76 |
-
|
77 |
-
Args:
|
78 |
-
query: The user's query.
|
79 |
-
"""
|
80 |
-
retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6)
|
81 |
-
keys = ["author", "creator", "page", "source", "start_index", "total_pages"]
|
82 |
-
serialized = "\n\n".join(
|
83 |
-
(f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}")
|
84 |
-
for doc in retrieved_docs
|
85 |
-
)
|
86 |
-
return serialized, retrieved_docs
|
87 |
-
|
88 |
-
def generate(query):
|
89 |
-
"""Generate a response to the user's query."""
|
90 |
-
# Dummy retriever.
|
91 |
-
retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1})
|
92 |
-
|
93 |
-
# Create a RAG chain using the history-aware retriever and the document-retriever.
|
94 |
-
history_retriever = history_aware_retriever(st.session_state.llm, retriever)
|
95 |
-
question_answer_chain = documents_retriever(st.session_state.llm)
|
96 |
-
|
97 |
-
rag_chain = create_retrieval_chain(history_retriever, question_answer_chain)
|
98 |
-
|
99 |
-
# Usage:
|
100 |
-
response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)})
|
101 |
-
st.session_state.messages.append(query)
|
102 |
-
st.session_state.messages.append(response["answer"])
|
103 |
-
return response["answer"]
|
104 |
-
|
105 |
-
if __name__ == "__main__":
|
106 |
-
os.makedirs(db_name, exist_ok=True) # This directory is used to store persistent files from Chromadb
|
107 |
-
|
108 |
-
inputs()
|
109 |
-
st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY"))
|
110 |
-
load_embedding()
|
111 |
-
|
112 |
-
if "messages" not in st.session_state:
|
113 |
-
st.session_state.messages = []
|
114 |
-
|
115 |
-
if st.session_state.messages:
|
116 |
-
st.chat_message('human').write(st.session_state.messages[-2])
|
117 |
-
st.chat_message('ai').write(st.session_state.messages[-1])
|
118 |
-
|
119 |
-
query = st.chat_input("Masukkan Prompt")
|
120 |
-
if query:
|
121 |
-
st.chat_message("human").write(query)
|
122 |
-
response = generate(query)
|
123 |
-
st.chat_message("ai").write(response)
|
|
|
1 |
+
__import__('pysqlite3')
|
2 |
+
import sys
|
3 |
+
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
+
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from uuid import uuid4
|
8 |
+
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
11 |
+
|
12 |
+
from langchain.chains import create_retrieval_chain
|
13 |
+
from langchain_core.tools import tool
|
14 |
+
|
15 |
+
from utils.preprocess import load_data, split_data, upsert_chromadb
|
16 |
+
from utils.prebuilt_chain import history_aware_retriever, documents_retriever
|
17 |
+
|
18 |
+
import streamlit as st
|
19 |
+
|
20 |
+
db_name = "chroma" # default name for Chromadb
|
21 |
+
|
22 |
+
st.set_page_config(page_title="RAG Demo App")
|
23 |
+
st.title("Demo Retrieval Augmented Generation With LanghChain & Chroma")
|
24 |
+
|
25 |
+
@st.cache_resource
|
26 |
+
def load_model(api_key):
|
27 |
+
"""cached llm and embedding model"""
|
28 |
+
if st.session_state.provider == "OpenAI":
|
29 |
+
return ChatOpenAI(model="gpt-4o-mini", temperature=0.3, api_key=api_key)
|
30 |
+
elif st.session_state.provider == "Groq":
|
31 |
+
return ChatOpenAI(model="qwen-2.5-32b", temperature=0.3, api_key=api_key, base_url="https://api.groq.com/openai/v1")
|
32 |
+
|
33 |
+
@st.cache_resource
|
34 |
+
def load_embedding():
|
35 |
+
st.session_state.embedding = FastEmbedEmbeddings(model_name="jinaai/jina-embeddings-v2-base-de",
|
36 |
+
batch_size=64)
|
37 |
+
|
38 |
+
def inputs():
|
39 |
+
"""Input fields for user interaction"""
|
40 |
+
with st.sidebar:
|
41 |
+
st.session_state.provider = st.radio("Pilih model LLM", ["OpenAI", "Groq"])
|
42 |
+
|
43 |
+
st.session_state.api_key = st.text_input("Masukkan API Key", type="password")
|
44 |
+
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
|
45 |
+
|
46 |
+
st.session_state.chroma_collection_name = st.text_input("Chroma Collection Name")
|
47 |
+
|
48 |
+
st.session_state.source_docs = st.file_uploader("Unggah file PDF", type=["pdf"], accept_multiple_files=True)
|
49 |
+
st.button("Proses Dokumen", on_click=process_data)
|
50 |
+
|
51 |
+
def process_data():
|
52 |
+
"""Main function to process data"""
|
53 |
+
if not st.session_state.api_key or not st.session_state.chroma_collection_name or not st.session_state.source_docs:
|
54 |
+
st.error("Tolong masukan API key, Chroma collection name, dan dokumen yang diperlukan!!")
|
55 |
+
else:
|
56 |
+
with st.spinner("📚 Memproses dokumen..."):
|
57 |
+
loaded_docs = load_data(st.session_state.source_docs)
|
58 |
+
splitted_docs = split_data(loaded_docs)
|
59 |
+
|
60 |
+
idx = [str(uuid4()) for _ in range(len(splitted_docs))]
|
61 |
+
|
62 |
+
st.session_state.vector_store = upsert_chromadb(splitted_docs,
|
63 |
+
st.session_state.embedding,
|
64 |
+
idx,
|
65 |
+
st.session_state.chroma_collection_name,
|
66 |
+
db_name)
|
67 |
+
msg = st.empty()
|
68 |
+
msg.success("Dokumen berhasil diproses!")
|
69 |
+
time.sleep(3)
|
70 |
+
msg.empty()
|
71 |
+
|
72 |
+
# Main retriever
|
73 |
+
@tool(response_format="content_and_artifact")
|
74 |
+
def retrieve(query: str):
|
75 |
+
"""Retrieve information related to a query.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
query: The user's query.
|
79 |
+
"""
|
80 |
+
retrieved_docs = st.session_state.vector_store.similarity_search(query, k=6)
|
81 |
+
keys = ["author", "creator", "page", "source", "start_index", "total_pages"]
|
82 |
+
serialized = "\n\n".join(
|
83 |
+
(f"Source: {[{key: doc.metadata.get(key)} for key in keys]}\n" f"Content: {doc.page_content}")
|
84 |
+
for doc in retrieved_docs
|
85 |
+
)
|
86 |
+
return serialized, retrieved_docs
|
87 |
+
|
88 |
+
def generate(query):
|
89 |
+
"""Generate a response to the user's query."""
|
90 |
+
# Dummy retriever.
|
91 |
+
retriever = st.session_state.vector_store.as_retriever(search_kwargs={"k" : 1})
|
92 |
+
|
93 |
+
# Create a RAG chain using the history-aware retriever and the document-retriever.
|
94 |
+
history_retriever = history_aware_retriever(st.session_state.llm, retriever)
|
95 |
+
question_answer_chain = documents_retriever(st.session_state.llm)
|
96 |
+
|
97 |
+
rag_chain = create_retrieval_chain(history_retriever, question_answer_chain)
|
98 |
+
|
99 |
+
# Usage:
|
100 |
+
response = rag_chain.invoke({"input": query, "chat_history" : st.session_state.messages, "context" : retrieve.invoke(query)})
|
101 |
+
st.session_state.messages.append(query)
|
102 |
+
st.session_state.messages.append(response["answer"])
|
103 |
+
return response["answer"]
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
os.makedirs(db_name, exist_ok=True) # This directory is used to store persistent files from Chromadb
|
107 |
+
|
108 |
+
inputs()
|
109 |
+
st.session_state.llm = load_model(os.getenv("OPENAI_API_KEY"))
|
110 |
+
load_embedding()
|
111 |
+
|
112 |
+
if "messages" not in st.session_state:
|
113 |
+
st.session_state.messages = []
|
114 |
+
|
115 |
+
if st.session_state.messages:
|
116 |
+
st.chat_message('human').write(st.session_state.messages[-2])
|
117 |
+
st.chat_message('ai').write(st.session_state.messages[-1])
|
118 |
+
|
119 |
+
query = st.chat_input("Masukkan Prompt")
|
120 |
+
if query:
|
121 |
+
st.chat_message("human").write(query)
|
122 |
+
response = generate(query)
|
123 |
+
st.chat_message("ai").write(response)
|