File size: 7,823 Bytes
8377658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import copy
import random

import torch
import torch.nn.functional as FF
import torch.optim

from . import utils
from .stylegan2.model import Generator


class CustomGenerator(Generator):
    def prepare(
        self,
        styles,
        inject_index=None,
        truncation=1,
        truncation_latent=None,
        input_is_latent=False,
        noise=None,
        randomize_noise=True,
    ):
        if not input_is_latent:
            styles = [self.style(s) for s in styles]

        if noise is None:
            if randomize_noise:
                noise = [None] * self.num_layers
            else:
                noise = [
                    getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
                ]

        if truncation < 1:
            style_t = []

            for style in styles:
                style_t.append(
                    truncation_latent + truncation * (style - truncation_latent)
                )

            styles = style_t

        if len(styles) < 2:
            inject_index = self.n_latent

            if styles[0].ndim < 3:
                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)

            else:
                latent = styles[0]

        else:
            if inject_index is None:
                inject_index = random.randint(1, self.n_latent - 1)

            latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)

            latent = torch.cat([latent, latent2], 1)

        return latent, noise

    def generate(
        self,
        latent,
        noise,
    ):
        out = self.input(latent)
        out = self.conv1(out, latent[:, 0], noise=noise[0])

        skip = self.to_rgb1(out, latent[:, 1])
        i = 1
        for conv1, conv2, noise1, noise2, to_rgb in zip(
            self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
        ):
            out = conv1(out, latent[:, i], noise=noise1)
            out = conv2(out, latent[:, i + 1], noise=noise2)
            skip = to_rgb(out, latent[:, i + 2], skip)
            if out.shape[-1] == 256: F = out
            i += 2

        image = skip
        F = FF.interpolate(F, image.shape[-2:], mode='bilinear')
        return image, F


def stylegan2(
    size=1024,
    channel_multiplier=2,
    latent=512,
    n_mlp=8,
    ckpt='stylegan2-ffhq-config-f.pt'
):
    g_ema = CustomGenerator(size, latent, n_mlp, channel_multiplier=channel_multiplier, human='human' in ckpt)
    checkpoint = torch.load(utils.get_path(ckpt))
    g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
    g_ema.requires_grad_(False)
    g_ema.eval()
    return g_ema


def drag_gan(
    g_ema,
    latent: torch.Tensor,
    noise,
    F,
    handle_points,
    target_points,
    mask,
    max_iters=1000,
    r1=3,
    r2=12,
    lam=20,
    d=2,
    lr=2e-3,
):
    handle_points0 = copy.deepcopy(handle_points)
    handle_points = torch.stack(handle_points)
    handle_points0 = torch.stack(handle_points0)
    target_points = torch.stack(target_points)

    F0 = F.detach().clone()
    device = latent.device

    latent_trainable = latent[:, :6, :].detach().clone().requires_grad_(True)
    latent_untrainable = latent[:, 6:, :].detach().clone().requires_grad_(False)
    optimizer = torch.optim.Adam([latent_trainable], lr=lr)
    for _ in range(max_iters):
        if torch.allclose(handle_points, target_points, atol=d):
            break

        optimizer.zero_grad()
        latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
        sample2, F2 = g_ema.generate(latent, noise)

        # motion supervision
        loss = motion_supervison(handle_points, target_points, F2, r1, device)

        if mask is not None:
            loss += ((F2 - F0) * (1 - mask)).abs().mean() * lam

        loss.backward()
        optimizer.step()

        with torch.no_grad():
            latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
            sample2, F2 = g_ema.generate(latent, noise)
            handle_points = point_tracking(F2, F0, handle_points, handle_points0, r2, device)

        F = F2.detach().clone()
        # if iter % 1 == 0:
        #     print(iter, loss.item(), handle_points, target_points)

        yield sample2, latent, F2, handle_points


def motion_supervison(handle_points, target_points, F2, r1, device):
    loss = 0
    n = len(handle_points)
    for i in range(n):
        target2handle = target_points[i] - handle_points[i]
        d_i = target2handle / (torch.norm(target2handle) + 1e-7)
        if torch.norm(d_i) > torch.norm(target2handle):
            d_i = target2handle

        mask = utils.create_circular_mask(
            F2.shape[2], F2.shape[3], center=handle_points[i].tolist(), radius=r1
        ).to(device)

        coordinates = torch.nonzero(mask).float()  # shape [num_points, 2]

        # Shift the coordinates in the direction d_i
        shifted_coordinates = coordinates + d_i[None]

        h, w = F2.shape[2], F2.shape[3]

        # Extract features in the mask region and compute the loss
        F_qi = F2[:, :, mask]  # shape: [C, H*W]

        # Sample shifted patch from F
        normalized_shifted_coordinates = shifted_coordinates.clone()
        normalized_shifted_coordinates[:, 0] = (
            2.0 * shifted_coordinates[:, 0] / (h - 1)
        ) - 1  # for height
        normalized_shifted_coordinates[:, 1] = (
            2.0 * shifted_coordinates[:, 1] / (w - 1)
        ) - 1  # for width
        # Add extra dimensions for batch and channels (required by grid_sample)
        normalized_shifted_coordinates = normalized_shifted_coordinates.unsqueeze(
            0
        ).unsqueeze(
            0
        )  # shape [1, 1, num_points, 2]
        normalized_shifted_coordinates = normalized_shifted_coordinates.flip(
            -1
        )  # grid_sample expects [x, y] instead of [y, x]
        normalized_shifted_coordinates = normalized_shifted_coordinates.clamp(-1, 1)

        # Use grid_sample to interpolate the feature map F at the shifted patch coordinates
        F_qi_plus_di = torch.nn.functional.grid_sample(
            F2, normalized_shifted_coordinates, mode="bilinear", align_corners=True
        )
        # Output has shape [1, C, 1, num_points] so squeeze it
        F_qi_plus_di = F_qi_plus_di.squeeze(2)  # shape [1, C, num_points]

        loss += torch.nn.functional.l1_loss(F_qi.detach(), F_qi_plus_di)
    return loss


def point_tracking(
    F: torch.Tensor,
    F0: torch.Tensor,
    handle_points: torch.Tensor,
    handle_points0: torch.Tensor,
    r2: int = 3,
    device: torch.device = torch.device("cuda"),
) -> torch.Tensor:

    n = handle_points.shape[0]  # Number of handle points
    new_handle_points = torch.zeros_like(handle_points)

    for i in range(n):
        # Compute the patch around the handle point
        patch = utils.create_square_mask(
            F.shape[2], F.shape[3], center=handle_points[i].tolist(), radius=r2
        ).to(device)

        # Find indices where the patch is True
        patch_coordinates = torch.nonzero(patch)  # shape [num_points, 2]

        # Extract features in the patch
        F_qi = F[:, :, patch_coordinates[:, 0], patch_coordinates[:, 1]]
        # Extract feature of the initial handle point
        f_i = F0[:, :, handle_points0[i][0].long(), handle_points0[i][1].long()]

        # Compute the L1 distance between the patch features and the initial handle point feature
        distances = torch.norm(F_qi - f_i[:, :, None], p=1, dim=1)

        # Find the new handle point as the one with minimum distance
        min_index = torch.argmin(distances)
        new_handle_points[i] = patch_coordinates[min_index]

    return new_handle_points