File size: 12,037 Bytes
8377658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# Modified from this following version https://github.com/skimai/DragGAN
import os
import sys
import time
from typing import List, Optional, Tuple
import copy
import numpy as np
import PIL
import torch
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
stylegan2_dir = os.path.join(CURRENT_DIR, "stylegan2")
sys.path.insert(0, stylegan2_dir)
import dnnlib
import legacy
from . import utils
def load_model(
network_pkl: str = "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqdog.pkl",
device: torch.device = torch.device("cuda"),
fp16: bool = True,
) -> torch.nn.Module:
"""
Loads a pretrained StyleGAN2-ADA generator network from a pickle file.
Args:
network_pkl (str): The URL or local path to the network pickle file.
device (torch.device): The device to use for the computation.
fp16 (bool): Whether to use half-precision floating point format for the network weights.
Returns:
The pretrained generator network.
"""
print('Loading networks from "%s"...' % network_pkl)
with dnnlib.util.open_url(network_pkl) as f:
chkpt = legacy.load_network_pkl(f, force_fp16=fp16)
G = chkpt["G_ema"].to(device).eval()
for param in G.parameters():
param.requires_grad_(False)
# Create a new attribute called "activations" for the Generator class
# This will be a list of activations from each layer
G.__setattr__("activations", None)
# Forward hook to collect features
def hook(module, input, output):
G.activations = output
# Apply the hook to the 7th layer (256x256)
for i, (name, module) in enumerate(G.synthesis.named_children()):
if i == 6:
print("Registering hook for:", name)
module.register_forward_hook(hook)
return G
def register_hook(G):
# Create a new attribute called "activations" for the Generator class
# This will be a list of activations from each layer
G.__setattr__("activations", None)
# Forward hook to collect features
def hook(module, input, output):
G.activations = output
# Apply the hook to the 7th layer (256x256)
for i, (name, module) in enumerate(G.synthesis.named_children()):
if i == 6:
print("Registering hook for:", name)
module.register_forward_hook(hook)
return G
def generate_W(
_G: torch.nn.Module,
seed: int = 0,
network_pkl: Optional[str] = None,
truncation_psi: float = 1.0,
truncation_cutoff: Optional[int] = None,
device: torch.device = torch.device("cuda"),
) -> np.ndarray:
"""
Generates a latent code tensor in W+ space from a pretrained StyleGAN2-ADA generator network.
Args:
_G (torch.nn.Module): The generator network, with underscore to avoid streamlit cache error
seed (int): The random seed to use for generating the latent code.
network_pkl (Optional[str]): The path to the network pickle file. If None, the default network will be used.
truncation_psi (float): The truncation psi value to use for the mapping network.
truncation_cutoff (Optional[int]): The number of layers to use for the truncation trick. If None, all layers will be used.
device (torch.device): The device to use for the computation.
Returns:
The W+ latent as a numpy array of shape [1, num_layers, 512].
"""
G = _G
torch.manual_seed(seed)
z = torch.randn(1, G.z_dim).to(device)
num_layers = G.synthesis.num_ws
if truncation_cutoff == -1:
truncation_cutoff = None
elif truncation_cutoff is not None:
truncation_cutoff = min(num_layers, truncation_cutoff)
W = G.mapping(
z,
None,
truncation_psi=truncation_psi,
truncation_cutoff=truncation_cutoff,
)
return W.cpu().numpy()
def forward_G(
G: torch.nn.Module,
W: torch.Tensor,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass through the generator network.
Args:
G (torch.nn.Module): The generator network.
W (torch.Tensor): The latent code tensor of shape [batch_size, latent_dim, 512].
device (torch.device): The device to use for the computation.
Returns:
A tuple containing the generated image tensor of shape [batch_size, 3, height, width]
and the feature maps tensor of shape [batch_size, num_channels, height, width].
"""
register_hook(G)
if not isinstance(W, torch.Tensor):
W = torch.from_numpy(W).to(device)
img = G.synthesis(W, noise_mode="const", force_fp32=True)
return img, G.activations[0]
def generate_image(
W,
_G: Optional[torch.nn.Module] = None,
network_pkl: Optional[str] = None,
class_idx=None,
device=torch.device("cuda"),
) -> Tuple[PIL.Image.Image, torch.Tensor]:
"""
Generates an image using a pretrained generator network.
Args:
W (torch.Tensor): A tensor of latent codes of shape [batch_size, latent_dim, 512].
_G (Optional[torch.nn.Module]): The generator network. If None, the network will be loaded from `network_pkl`.
network_pkl (Optional[str]): The path to the network pickle file. If None, the default network will be used.
class_idx (Optional[int]): The class index to use for conditional generation. If None, unconditional generation will be used.
device (str): The device to use for the computation.
Returns:
A tuple containing the generated image as a PIL Image object and the feature maps tensor of shape [batch_size, num_channels, height, width].
"""
if _G is None:
assert network_pkl is not None
_G = load_model(network_pkl, device)
G = _G
# Labels.
label = torch.zeros([1, G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
raise Exception(
"Must specify class label with --class when using a conditional network"
)
label[:, class_idx] = 1
else:
if class_idx is not None:
print("warn: --class=lbl ignored when running on an unconditional network")
# Generate image
img, features = forward_G(G, W, device)
img = utils.tensor_to_PIL(img)
return img, features
def drag_gan(
W,
G,
handle_points,
target_points,
mask,
max_iters=1000,
r1=3,
r2=12,
lam=20,
d=2,
lr=2e-3,
):
handle_points0 = copy.deepcopy(handle_points)
handle_points = torch.stack(handle_points)
handle_points0 = torch.stack(handle_points0)
target_points = torch.stack(target_points)
device = torch.device("cuda")
img, F0 = forward_G(G, W, device)
target_resolution = img.shape[-1]
F0_resized = torch.nn.functional.interpolate(
F0,
size=(target_resolution, target_resolution),
mode="bilinear",
align_corners=True,
).detach()
W = torch.from_numpy(W).to(device).float()
W.requires_grad_(False)
# Only optimize the first 6 layers of W
W_layers_to_optimize = W[:, :6].clone()
W_layers_to_optimize.requires_grad_(True)
optimizer = torch.optim.Adam([W_layers_to_optimize], lr=lr)
for _ in range(max_iters):
start = time.perf_counter()
if torch.allclose(handle_points, target_points, atol=d):
break
optimizer.zero_grad()
W_combined = torch.cat([W_layers_to_optimize, W[:, 6:].detach()], dim=1)
img, F = forward_G(G, W_combined, device)
F_resized = torch.nn.functional.interpolate(
F,
size=(target_resolution, target_resolution),
mode="bilinear",
align_corners=True,
)
# motion supervision
loss = motion_supervison(handle_points, target_points, F_resized, r1, device)
# if mask is not None:
# loss += ((F - F0) * (1 - mask)).abs().mean() * lam
loss.backward()
optimizer.step()
print(
f"Loss: {loss.item():0.2f}\tTime: {(time.perf_counter() - start) * 1000:.0f}ms"
)
with torch.no_grad():
img, F = forward_G(G, W_combined, device)
handle_points = point_tracking(F_resized, F0_resized, handle_points, handle_points0, r2, device)
# if iter % 1 == 0:
# print(iter, loss.item(), handle_points, target_points)
W_out = torch.cat([W_layers_to_optimize, W[:, 6:]], dim=1).detach().cpu().numpy()
img = utils.tensor_to_PIL(img)
yield img, W_out, handle_points
def motion_supervison(handle_points, target_points, F, r1, device):
loss = 0
n = len(handle_points)
for i in range(n):
target2handle = target_points[i] - handle_points[i]
d_i = target2handle / (torch.norm(target2handle) + 1e-7)
if torch.norm(d_i) > torch.norm(target2handle):
d_i = target2handle
mask = utils.create_circular_mask(
F.shape[2], F.shape[3], center=handle_points[i].tolist(), radius=r1
).to(device)
coordinates = torch.nonzero(mask).float() # shape [num_points, 2]
# Shift the coordinates in the direction d_i
shifted_coordinates = coordinates + d_i[None]
h, w = F.shape[2], F.shape[3]
# Extract features in the mask region and compute the loss
F_qi = F[:, :, mask] # shape: [C, H*W]
# Sample shifted patch from F
normalized_shifted_coordinates = shifted_coordinates.clone()
normalized_shifted_coordinates[:, 0] = (
2.0 * shifted_coordinates[:, 0] / (h - 1)
) - 1 # for height
normalized_shifted_coordinates[:, 1] = (
2.0 * shifted_coordinates[:, 1] / (w - 1)
) - 1 # for width
# Add extra dimensions for batch and channels (required by grid_sample)
normalized_shifted_coordinates = normalized_shifted_coordinates.unsqueeze(
0
).unsqueeze(
0
) # shape [1, 1, num_points, 2]
normalized_shifted_coordinates = normalized_shifted_coordinates.flip(
-1
) # grid_sample expects [x, y] instead of [y, x]
normalized_shifted_coordinates = normalized_shifted_coordinates.clamp(-1, 1)
# Use grid_sample to interpolate the feature map F at the shifted patch coordinates
F_qi_plus_di = torch.nn.functional.grid_sample(
F, normalized_shifted_coordinates, mode="bilinear", align_corners=True
)
# Output has shape [1, C, 1, num_points] so squeeze it
F_qi_plus_di = F_qi_plus_di.squeeze(2) # shape [1, C, num_points]
loss += torch.nn.functional.l1_loss(F_qi.detach(), F_qi_plus_di)
return loss
def point_tracking(
F: torch.Tensor,
F0: torch.Tensor,
handle_points: torch.Tensor,
handle_points0: torch.Tensor,
r2: int = 3,
device: torch.device = torch.device("cuda"),
) -> torch.Tensor:
n = handle_points.shape[0] # Number of handle points
new_handle_points = torch.zeros_like(handle_points)
for i in range(n):
# Compute the patch around the handle point
patch = utils.create_square_mask(
F.shape[2], F.shape[3], center=handle_points[i].tolist(), radius=r2
).to(device)
# Find indices where the patch is True
patch_coordinates = torch.nonzero(patch) # shape [num_points, 2]
# Extract features in the patch
F_qi = F[:, :, patch_coordinates[:, 0], patch_coordinates[:, 1]]
# Extract feature of the initial handle point
f_i = F0[:, :, handle_points0[i][0].long(), handle_points0[i][1].long()]
# Compute the L1 distance between the patch features and the initial handle point feature
distances = torch.norm(F_qi - f_i[:, :, None], p=1, dim=1)
# Find the new handle point as the one with minimum distance
min_index = torch.argmin(distances)
new_handle_points[i] = patch_coordinates[min_index]
return new_handle_points
|