File size: 14,273 Bytes
fd3a517
53a6bc7
fd3a517
 
 
53a6bc7
7145dd2
26ebe16
19fc903
53a6bc7
a51380e
 
5b9d0ae
a51380e
101dbdd
0822a9f
101dbdd
0822a9f
 
fd3a517
 
 
 
 
 
 
 
 
cd0e33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51380e
 
5b9d0ae
a51380e
 
 
 
 
 
 
 
 
 
 
 
 
5b9d0ae
 
 
 
 
 
 
 
 
 
 
 
a51380e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fcc3eb
fd3a517
cd0e33c
a51380e
cd0e33c
 
 
a51380e
 
 
fd3a517
a51380e
fd3a517
 
 
 
19fc903
 
 
 
 
 
a51380e
5b9d0ae
 
cd0e33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7145dd2
cd0e33c
 
 
 
 
 
 
 
 
19fc903
fd3a517
 
cd0e33c
 
 
fd3a517
 
 
5b9d0ae
 
 
fd3a517
a51380e
fd3a517
 
 
cd0e33c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9d0ae
 
 
cd0e33c
 
 
 
 
 
 
 
 
 
fd3a517
a51380e
 
4b81875
cd0e33c
4b81875
 
60f3e1b
cd0e33c
 
 
 
 
 
 
4b81875
cd0e33c
 
 
4b81875
cd0e33c
 
5b9d0ae
cd0e33c
fd3a517
5b9d0ae
a51380e
5b9d0ae
cd0e33c
 
5b9d0ae
 
 
97844a5
5b9d0ae
97844a5
5b9d0ae
 
fd3a517
 
a51380e
fd3a517
 
 
19fc903
a51380e
 
 
 
fd3a517
cd0e33c
fd3a517
cd0e33c
 
 
fd3a517
 
 
 
cd0e33c
fd3a517
 
 
 
cd0e33c
fd3a517
 
 
a51380e
fd3a517
 
 
 
7145dd2
5b9d0ae
fd3a517
 
 
 
 
 
 
 
cd0e33c
fd3a517
 
 
a51380e
fd3a517
cd0e33c
fd3a517
 
 
 
a51380e
 
 
 
 
 
 
 
 
 
 
 
5b9d0ae
a51380e
fd3a517
a51380e
 
 
 
 
 
 
5b9d0ae
 
 
 
 
 
 
 
b7112a6
 
 
 
 
5b9d0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3a517
 
 
 
 
 
 
 
ac4fa5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import gradio as gr
from gradio_client import Client, handle_file
from pathlib import Path
from gradio.utils import get_cache_folder

import torch
import torchvision.transforms as transforms
from PIL import Image

import cv2
import numpy as np
import ast

# from zerogpu import init_zerogpu

# init_zerogpu()


class Examples(gr.helpers.Examples):
    def __init__(self, *args, cached_folder=None, **kwargs):
        super().__init__(*args, **kwargs, _initiated_directly=False)
        if cached_folder is not None:
            self.cached_folder = cached_folder
            # self.cached_file = Path(self.cached_folder) / "log.csv"
        self.create()


def postprocess(output, prompt):
    result = []
    image = Image.open(output)
    w, h = image.size
    n = len(prompt)
    slice_width = w // n

    for i in range(n):
        left = i * slice_width
        right = (i + 1) * slice_width if i < n - 1 else w
        cropped_img = image.crop((left, 0, right, h))

        caption = prompt[i]

        result.append((cropped_img, caption))
    return result

# user click the image to get points, and show the points on the image
def get_point(img, sel_pix, evt: gr.SelectData):
    # print(img, sel_pix)
    if len(sel_pix) < 5:
        sel_pix.append((evt.index, 1))    # default foreground_point
    img = cv2.imread(img)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    # draw points
    
    for point, label in sel_pix:
        cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
    # if img[..., 0][0, 0] == img[..., 2][0, 0]:  # BGR to RGB
    #     img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    print(sel_pix)
    return img, sel_pix

def set_point(img, checkbox_group, sel_pix, semantic_input):
    ori_img = img
    # print(img, checkbox_group, sel_pix, semantic_input)
    sel_pix = ast.literal_eval(sel_pix)
    img = cv2.imread(img)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    if len(sel_pix) <= 5 and len(sel_pix) > 0:
        for point, label in sel_pix:
            cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
    
    return ori_img, img, sel_pix


# undo the selected point
def undo_points(orig_img, sel_pix):
    if isinstance(orig_img, int):   # if orig_img is int, the image if select from examples
        temp = cv2.imread(image_examples[orig_img][0])
        temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
    else:
        temp = cv2.imread(orig_img)
        temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
    # draw points
    if len(sel_pix) != 0:
        sel_pix.pop()
        for point, label in sel_pix:
            cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
    if temp[..., 0][0, 0] == temp[..., 2][0, 0]:  # BGR to RGB
        temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
    return temp, sel_pix


HF_TOKEN = os.environ.get('HF_KEY')

client = Client("Canyu/Diception",
                max_workers=3,
                hf_token=HF_TOKEN)

colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]

def process_image_check(path_input, prompt, sel_points, semantic):
    if path_input is None:
        raise gr.Error(
            "Missing image in the left pane: please upload an image first."
        )
    if len(prompt) == 0:
        raise gr.Error(
            "At least 1 prediction type is needed."
        )


def inf(image_path, prompt, sel_points, semantic):
    if isinstance(sel_points, str):
        sel_points = ast.literal_eval(selected_points)
    print('=========== PROCESS IMAGE CHECK ===========')
    print(f"Image Path: {image_path}")
    print(f"Prompt: {prompt}")
    print(f"Selected Points (before processing): {sel_points}")
    print(f"Semantic Input: {semantic}")
    print('===========================================')

    if 'point segmentation' in prompt and len(sel_points) == 0:
        raise gr.Error(
            "At least 1 point is needed."
        )
        return
    if 'point segmentation' not in prompt and len(sel_points) != 0:
        raise gr.Error(
            "You must select 'point segmentation' when performing point segmentation."
        )
        return

    if 'semantic segmentation' in prompt and semantic == '':
        raise gr.Error(
            "Target category is needed."
        )
        return
    if 'semantic segmentation' not in prompt and semantic != '':
        raise gr.Error(
            "You must select 'semantic segmentation' when performing semantic segmentation."
        )
        return

    # return None
    # inputs = process_image_4(image_path, prompt, sel_points, semantic)

    prompt_str = str(sel_points)
    
    result = client.predict(
      input_image=handle_file(image_path), 
      checkbox_group=prompt, 
      selected_points=prompt_str, 
      semantic_input=semantic,
      api_name="/inf"
    )

    result = postprocess(result, prompt)
    return result

def clear_cache():
    return None, None

def dummy():
    pass

def run_demo_server():
    options = ['depth', 'normal', 'entity segmentation', 'human pose', 'point segmentation', 'semantic segmentation']
    gradio_theme = gr.themes.Default()
    with gr.Blocks(
        theme=gradio_theme,
        title="Diception",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
            .hideme {
                display: none;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:
        selected_points = gr.State([])      # store points
        original_image = gr.State(value=None)   # store original image without points, default None
        gr.HTML(
            """
            <h1>DICEPTION: A Generalist Diffusion Model for Vision Perception</h1>
            <h3>One single model solves multiple perception tasks, producing impressive results!</h3>
            <h3>Due to the GPU quota limit, if an error occurs, please wait for 5 minutes before retrying.</h3>
            <p align="center">
            <a title="arXiv" href="https://arxiv.org" target="_blank" rel="noopener noreferrer" 
                    style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
            </a>
            <a title="Github" href="https://github.com/aim-uofa/Diception" target="_blank" rel="noopener noreferrer" 
                    style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/aim-uofa/Diception?label=GitHub%20%E2%98%85&logo=github&color=C8C" 
                        alt="badge-github-stars">
            </a>
            </p>

        """
        )
        selected_points_tmp = gr.Textbox(label="Points", elem_classes="hideme")

        with gr.Row():
            checkbox_group = gr.CheckboxGroup(choices=options, label="Task")
        with gr.Row():
            semantic_input = gr.Textbox(label="Category Name", placeholder="e.g. person/cat/dog/elephant......  (for semantic segmentation only, in COCO)")
        with gr.Row():
            gr.Markdown('For non-human image inputs, the pose results may have issues. Same when perform semantic segmentation with categories that are not in COCO.')
        with gr.Row():
            gr.Markdown('The results of semantic segmentation may be unstable because:')
        with gr.Row():
            gr.Markdown('- We only trained on COCO, whose quality and quantity are insufficient to meet the requirements.')
        with gr.Row():
            gr.Markdown('- Semantic segmentation is more complex than other tasks, as it requires accurately learning the relationship between semantics and objects.')
        with gr.Row():
            gr.Markdown('However, we are still able to produce some high-quality semantic segmentation results, strongly demonstrating the potential of our approach.')
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="filepath",
                )

                with gr.Column():
                    with gr.Row():
                        gr.Markdown('You can click on the image to select points prompt. At most 5 point.')

                    matting_image_submit_btn = gr.Button(
                        value="Run", variant="primary"
                    )

                with gr.Row():
                    undo_button = gr.Button('Undo point')
                    matting_image_reset_btn = gr.Button(value="Reset")
                
                
            with gr.Column():
                matting_image_output = gr.Gallery(label="Results")
                    
                
            

        # img_clear_button.click(clear_cache, outputs=[input_image, matting_image_output])

        matting_image_submit_btn.click(
            fn=process_image_check,
            inputs=[input_image, checkbox_group, selected_points, semantic_input],
            outputs=None,
            preprocess=False,
            queue=False,
        ).success(
            fn=inf,
            inputs=[original_image, checkbox_group, selected_points, semantic_input],
            outputs=[matting_image_output],
            concurrency_limit=1,
        )

        matting_image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                []
            ),
            inputs=[],
            outputs=[
                input_image,
                matting_image_output,
                selected_points
            ],
            queue=False,
        )


        # once user upload an image, the original image is stored in `original_image`
        def store_img(img):
            return img, []  # when new image is uploaded, `selected_points` should be empty
        input_image.upload(
            store_img,
            [input_image],
            [original_image, selected_points]
        )

        input_image.select(
            get_point,
            [original_image, selected_points],
            [input_image, selected_points],
        )

        undo_button.click(
            undo_points,
            [original_image, selected_points],
            [input_image, selected_points]
        )

        examples = gr.Examples(
            fn=set_point,
	        run_on_click=True,
            examples=[
                ["assets/woman.jpg", ['point segmentation', 'depth', 'normal', 'entity segmentation', 'human pose', 'semantic segmentation'], '[([2744, 975], 1), ([3440, 1954], 1), ([2123, 2405], 1), ([838, 1678], 1), ([4688, 1922], 1)]', 'person'],         
                ["assets/woman2.jpg", ['point segmentation', 'depth', 'entity segmentation', 'semantic segmentation', 'human pose'], '[([687, 1416], 1), ([1021, 707], 1), ([1138, 1138], 1), ([1182, 1583], 1), ([1188, 2172], 1)]', 'person'],         
                ["assets/board.jpg", ['point segmentation', 'depth', 'entity segmentation', 'normal'], '[([1003, 2163], 1)]', ''],         
                ["assets/lion.jpg", ['point segmentation', 'depth', 'semantic segmentation'], '[([1287, 671], 1)]', 'lion'],       
                ["assets/apple.jpg", ['point segmentation', 'depth', 'semantic segmentation', 'normal', 'entity segmentation'], '[([3367, 1950], 1)]

![image/png](https://cdn-uploads.huggingface.co/production/uploads/646efd223dd912a539e0bd46/V6P61Z6FsANrhioL8JnCL.png)

       ["assets/room.jpg", ['point segmentation', 'depth', 'semantic segmentation', 'normal', 'entity segmentation'], '[([1308, 2215], 1)]', 'chair'],       
                ["assets/car.jpg", ['point segmentation', 'depth', 'semantic segmentation', 'normal', 'entity segmentation'], '[([1276, 1369], 1)]', 'car'],       
                ["assets/person.jpg", ['point segmentation', 'depth', 'semantic segmentation', 'normal', 'entity segmentation', 'human pose'], '[([3253, 1459], 1)]', 'tie'],       
                ["assets/woman3.jpg", ['point segmentation', 'depth', 'entity segmentation'], '[([420, 692], 1)]', ''],
                ["assets/cat.jpg", ['point segmentation', 'depth', 'entity segmentation', 'semantic segmentation'], '[([756, 661], 1)]', 'cat'],
                ["assets/room2.jpg", ['point segmentation', 'depth', 'entity segmentation', 'semantic segmentation', 'normal'], '[([3946, 224], 1)]', 'laptop'],
                ["assets/cartoon_cat.png", ['point segmentation', 'depth', 'entity segmentation', 'semantic segmentation', 'normal'], '[([1478, 3048], 1)]', 'cat'],
                ["assets/sheep.jpg", ['point segmentation', 'depth', 'entity segmentation', 'semantic segmentation'], '[([1789, 1791], 1), ([1869, 1333], 1)]', 'sheep'],
                ["assets/cartoon_girl.jpeg", ['point segmentation', 'depth', 'entity segmentation', 'normal', 'human pose', 'semantic segmentation'], '[([1208, 2089], 1), ([635, 2731], 1), ([1070, 2888], 1), ([1493, 2350], 1)]', 'person'],
            ],
            inputs=[input_image, checkbox_group, selected_points_tmp, semantic_input],
            outputs=[original_image, input_image, selected_points],
            cache_examples=False,
        )

        
    demo.queue(
        api_open=False,
    ).launch()


if __name__ == '__main__':

    run_demo_server()